Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 69, Issue 1


Cholinesterase inhibitory potential of different Alternaria spp. and their phylogenetic relationships

Bahaderjeet Singh / Jyoti Bhagat / Bhupinder. Chadha / Amarjeet Kaur
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/s11756-013-0294-z


Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors are used for the treatment of various disorders related to decline in acetylcholine levels in the brain by inhibiting the activity of the neurotransmitter AChE. The present study reports the potential of endophytic Alternaria spp. for their potential to produce cholinesterase inhibitors active against both acetylcholine and butyrylcholine. Twenty-nine isolates belonging to Alternaria spp. were isolated from different plants and screened. Variation with respect to inhibitor production was observed in different isolates. Out of 29 cultures screened, good cholinesterase (both AChE and BChE) inhibitory activity in range of 70–85% was observed in three isolates, whereas three showed only AChE inhibition. No correlation was observed in AChE and BChE inhibitor production. TLC bioautography for the inhibitor in the selected cultures evinced different Rf values of inhibitors indicating different nature of the compounds produced. In order to analyze evolutionary relationships between producer and non-producer strains, phylogenetic analysis of six producer and five non-producer strains was carried out using amplified ITS-I-5.8SrDNA-ITS-II region. Phylogenetic analysis revealed majority of the non-producer strains to be present on different clades indicating different evolutionary origins. The dual cholinesterase inhibitory activity and the diversity in the inhibitors produced by different isolates could prove to be novel sources of pharmaceutical as well as agriculturally important biomolecules after purification and characterization.

Keywords: endophytic fungi; cholinesterase inhibitors; Alternaria spp.

  • [1] Bartus R.T., Dean R.L. Beer B. & Lippa A.S. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 30: 408–414. http://dx.doi.org/10.1126/science.7046051CrossrefGoogle Scholar

  • [2] Bhagat J., Kaur A., Sharma M., Saxena A.K. & Chadha B.S. 2011. Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World J. Microbiol. Biotechnol. 28: 963–971. http://dx.doi.org/10.1007/s11274-011-0894-0CrossrefWeb of ScienceGoogle Scholar

  • [3] Christias C.H., Hatzipapas P., Dara A., Kaliafas A. & Chrisanthis G. 2001. Alternaria alternata, a new pathotype pathogenic to aphids. Biocontrol 42: 105–124. http://dx.doi.org/10.1023/A:1009930112152CrossrefGoogle Scholar

  • [4] Darvesh S., Walsh R., Kumar R., Caines A., Roberts S., Magee D., Rockwood K. & Martin E. 2003. Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis. Assoc. Disord. 17: 117–126. http://dx.doi.org/10.1097/00002093-200304000-00011CrossrefGoogle Scholar

  • [5] Eldeen I.M.S., Elgorashi E.E. & van Staden J. 2005. Antibacterial, anti-inflammatory, anticholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J Ethnopharmacol. 102: 457–464. http://dx.doi.org/10.1016/j.jep.2005.08.049CrossrefGoogle Scholar

  • [6] Ellman G.L., Courtney K.D., Andres V. & Featherstone R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95. http://dx.doi.org/10.1016/0006-2952(61)90145-9CrossrefGoogle Scholar

  • [7] Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T., Lee B., Ingram D.K. & Lahiri D.K. 2001. A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr. Med. Res. Opin. 17: 159–165. CrossrefGoogle Scholar

  • [8] Holden M. & Kelly C. 2002. Use of cholinesterase inhibitors in dementia. Adv. Psych. Treat. 8: 89–96. http://dx.doi.org/10.1192/apt.8.2.89CrossrefGoogle Scholar

  • [9] Houghton P.J., Ren Y. & Howes M.J 2006. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 23: 181–199. http://dx.doi.org/10.1039/b508966mCrossrefGoogle Scholar

  • [10] Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120. http://dx.doi.org/10.1007/BF01731581CrossrefGoogle Scholar

  • [11] Larone D.H. 2002. Medically Important Fungi: A Guide to Identification. Washington, DC, ASM Press. Google Scholar

  • [12] Martinez A. & Castro A. 2006. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Inv. Drugs. 15: 1–12. http://dx.doi.org/10.1517/13543784.15.1.1CrossrefGoogle Scholar

  • [13] McGleenon B.M., Dynan K.B. & Passmore A.P. 1999. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol. 48: 471–480. http://dx.doi.org/10.1046/j.1365-2125.1999.00026.xCrossrefGoogle Scholar

  • [14] Rhee I.K., Meent M.V., Ingkaninan K. & Verpoorte R. 2001. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A915: 217–223. Google Scholar

  • [15] Rhee I.K., van Rijn R.M. & Verpoorte R. 2003. Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem. Anal. 14: 127–131. http://dx.doi.org/10.1002/pca.675CrossrefGoogle Scholar

  • [16] Rodrigues K.F., Costa G.L., Carvalho M.P. & Epifanio R.A. 2005. Evaluation of extracts produced by some tropical fungi as potential cholinesterase inhibitors. World J. Microbiol. Biotechnol. 21: 1617–1621. http://dx.doi.org/10.1007/s11274-005-8344-5CrossrefGoogle Scholar

  • [17] Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Web of ScienceGoogle Scholar

  • [18] Shabana Y.M & Ragab M.E. 1997. Alternaria infectoria, a promising biological control agent for the fig wax scale, Ceroplastes rusci (Homoptera: Coccidae), in Egypt. Biocontrol. Sci. Technol. 7: 553–564. http://dx.doi.org/10.1080/09583159730613CrossrefGoogle Scholar

  • [19] Sharma M., Chadha B.S., Kaur M., Ghatora S.K. & Saini H.S. 2008. Molecular characterization of multiple xylanase producing thermophilic/thermotolearnt fungi isolated from composting materials. Lett. Appl. Microbiol. 46: 526–535. http://dx.doi.org/10.1111/j.1472-765X.2008.02357.xWeb of ScienceCrossrefGoogle Scholar

  • [20] Singh B., Thakur A., Kaur S., Chadha B.S. & Kaur A. 2012. Acetylcholinesterase inhibitory potential and insecticidal activity of an endophytic Alternaria sp. from Ricinus communis. Appl. Biochem. Biotechnol. 168: 991–1002. http://dx.doi.org/10.1007/s12010-012-9835-0Web of ScienceCrossrefGoogle Scholar

  • [21] Strobel G.A. 2003. Endophytes as sources of bioactive products. Microbes Infect. 5: 535–544. http://dx.doi.org/10.1016/S1286-4579(03)00073-XCrossrefGoogle Scholar

  • [22] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. http://dx.doi.org/10.1093/molbev/msr121Web of ScienceCrossrefGoogle Scholar

  • [23] Tan R.X. & Zou W.X. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448–459. http://dx.doi.org/10.1039/b100918oCrossrefGoogle Scholar

  • [24] Zhang Z.B., Zeng Q.G., Yan R.M., Wang Y., Zou Z.R. & Zhu D. 2011. Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J. Microbiol. Biotechnol. 27: 479–486. http://dx.doi.org/10.1007/s11274-010-0476-6Web of ScienceCrossrefGoogle Scholar

  • [25] Zhu D., Wang J., Zeng Q., Zhang Z. & Yan R. 2010. A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J. Appl. Microbiol. 109: 1479–1486. http://dx.doi.org/10.1111/j.1365-2672.2010.04777.xCrossrefGoogle Scholar

About the article

Published Online: 2013-11-15

Published in Print: 2014-01-01

Citation Information: Biologia, Volume 69, Issue 1, Pages 10–14, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0294-z.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Melappa Govindappa, V. Thanuja, S. Tejashree, C.A. Soukhya, Suresh Barge, Arthikala Manojkumar, and Rai V. Ravishankar
International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 2019, Volume 13, Page 13
J. Bhagat, A. Kaur, R. Kaur, A.K. Yadav, V. Sharma, and B.S. Chadha
Journal of Applied Microbiology, 2016, Volume 121, Number 4, Page 1015

Comments (0)

Please log in or register to comment.
Log in