Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 10

Issues

Impact of silicon on maize seedlings exposed to short-term UV-B irradiation

Silvia Mihaličová Malčovská
  • Department of Botany, Institute of Biology and Ecology, Faculty of Science, University of P. J. Šafárik, Mánesova 23, SK-04154, Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zuzana Dučaiová
  • Department of Botany, Institute of Biology and Ecology, Faculty of Science, University of P. J. Šafárik, Mánesova 23, SK-04154, Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Bačkor
  • Department of Botany, Institute of Biology and Ecology, Faculty of Science, University of P. J. Šafárik, Mánesova 23, SK-04154, Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-07 | DOI: https://doi.org/10.2478/s11756-014-0432-2

Abstract

Enhanced UV-B irradiation is one of the most important abiotic stresses that can influence various aspects of plant morphology, biochemistry and physiology. Silicon as a beneficial element can increase the plant’s tolerance against different abiotic stresses, including UV-B stress. In this work, the effect of silicon supplementation on the sensitivity of young maize (Zea mays L.) seedlings exposed to short-term UV-B radiation was studied. The seedlings were grown with 0 or 5 mM silicon in cultivation medium and on the fifth day of cultivation, they were exposed for 15 and 30 min to UV-B (302 nm) radiation. No significant changes in growth and content of assimilation pigments and the chlorophyll a/b ratio were observed in any of tested irradiation periods in control or Si-treated plants. Under UV-B stress, the content of ROS (hydrogen peroxide and superoxide radical) and TBARS increased in control plants. The oxidative status of Si-treated plants was only slightly affected even after 30 min. Phenolic metabolites (total phenols and flavonoids), important for their screening function under radiation stress, slightly increased after UV-B exposure in control plants, however, only flavonoids increased after 30 min in Si-treated plants. The measured parameters indicated that to some extent silicon supplementation contributes to higher UV-B tolerance of maize seedlings.

Keywords: phenolic metabolism; oxidative stress; silicon; UV-B radiation

  • [1] Agati G. & Tattini M. 2010. Multiple functional roles of flavonoids in photoprotection. New Phytol. 186: 786–793. http://dx.doi.org/10.1111/j.1469-8137.2010.03269.xWeb of ScienceCrossrefGoogle Scholar

  • [2] Appel K. & Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399. http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701CrossrefGoogle Scholar

  • [3] Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [4] Cartwright H.N., Baucim C., Singh P., Smith K.L. & Stapleton A.E. 2001. Intraspecific comparisons reveal differences in the pattern of ultraviolet radiation responses in four maize (Zea mays L.) varieties. J. Photochem. Photobiol. B 62: 88–96. http://dx.doi.org/10.1016/S1011-1344(01)00153-1CrossrefGoogle Scholar

  • [5] Cooke J. & Leishman M.R. 2011. Is plant ecology more siliceous than we realise? Trends Plant Sci.16: 61–68. http://dx.doi.org/10.1016/j.tplants.2010.10.003Web of ScienceCrossrefGoogle Scholar

  • [6] Currie H.A. & Perry C.C. 2007. Silica in plants: biological, biochemical and chemical studies. Ann. Bot. 100: 1383–1389. http://dx.doi.org/10.1093/aob/mcm247CrossrefWeb of ScienceGoogle Scholar

  • [7] Elstner E.F. & Heupel A. 1976. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal. Biochem. 70: 616–620. http://dx.doi.org/10.1016/0003-2697(76)90488-7CrossrefGoogle Scholar

  • [8] Epstein E. 2009. Silicon: its manifold roles in plants. Ann. Appl. Biol. 155: 155–160. http://dx.doi.org/10.1111/j.1744-7348.2009.00343.xWeb of ScienceCrossrefGoogle Scholar

  • [9] Esterbauer H. & Cheeseman K.H. 1990. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186: 407–421. http://dx.doi.org/10.1016/0076-6879(90)86134-HCrossrefGoogle Scholar

  • [10] Fini A., Brunetti C., Di Ferdinando M., Ferrini F. & Tattini M. 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav. 6: 709–711. http://dx.doi.org/10.4161/psb.6.5.15069CrossrefGoogle Scholar

  • [11] Goto M., Ehara H., Karita S., Takabe K., Ogawa N., Yamada Y., Ogawa S., Yahaya M.S. & Morita O. 2003. Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crops. Plant Sci. 164: 349–356. http://dx.doi.org/10.1016/S0168-9452(02)00419-3CrossrefGoogle Scholar

  • [12] Hideg É., Jansen M.A.K. & Strid A. 2013. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 18: 107–115. http://dx.doi.org/10.1016/j.tplants.2012.09.003CrossrefWeb of ScienceGoogle Scholar

  • [13] Hoagland D.R. & Arnon D.I. 1950. The water-culture method for growing plants without soil. Calif. Agr. Expt. Sta. Circ. 347: 1–32. Google Scholar

  • [14] Hollósy F. 2002. Effects of ultraviolet radiation on plant cells. Micron 33: 179–197. http://dx.doi.org/10.1016/S0968-4328(01)00011-7CrossrefGoogle Scholar

  • [15] Jana S. & Choudhuri M.A. 1981. Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat. Bot. 12: 345–354. http://dx.doi.org/10.1016/0304-3770(82)90026-2CrossrefGoogle Scholar

  • [16] Kakani V.G., Reddy K.R., Zhao D. & Sailaja K. 2003. Field crop responses to ultraviolet-B radiation: a review. Agr. Forest Meteorol. 120: 191–218. http://dx.doi.org/10.1016/j.agrformet.2003.08.015CrossrefGoogle Scholar

  • [17] Kauss H., Seehaus K., Franke R., Gilbert S., Dietrich R.A. & Kröger N. 2003. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J. 33: 87–95. http://dx.doi.org/10.1046/j.1365-313X.2003.01606.xCrossrefGoogle Scholar

  • [18] Kováčik J., Klejdus B. & Bačkor M. 2009. Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J. Plant Physiol. 166: 1460–1464. http://dx.doi.org/10.1016/j.jplph.2009.03.002Web of ScienceCrossrefGoogle Scholar

  • [19] Liang Y., Hua H., Zhu Y.G., Zhang J., Cheng C. & Römheld V. 2006. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol. 172: 63–72. http://dx.doi.org/10.1111/j.1469-8137.2006.01797.xCrossrefGoogle Scholar

  • [20] Liang Y., Sun W., Zhu Y.G. & Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 147: 422–428. http://dx.doi.org/10.1016/j.envpol.2006.06.008Web of ScienceCrossrefGoogle Scholar

  • [21] Lidon F.J.C., Reboredo F.H., Leitao A., Silva M.M.A., Duarte M.P. & Ramalho J.C. 2012. Impact of UV-B radiation on photosynthesis — an overview. Emir. J. Food. Agric. 24: 546–556. http://dx.doi.org/10.9755/ejfa.v24i6.546556CrossrefGoogle Scholar

  • [22] Ma J.F. 2004. Role of silicon in enhancing the resistance of plant to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50: 11–18. http://dx.doi.org/10.1080/00380768.2004.10408447CrossrefGoogle Scholar

  • [23] Mackerness S.A.H, John C.F., Jordan B. & Thomas B. 2001. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett. 489: 237–242. http://dx.doi.org/10.1016/S0014-5793(01)02103-2CrossrefGoogle Scholar

  • [24] Mackerness S.A.H. 2000. Plant responses to ultraviolet-B (UVB: 280–320 nm) stress: What are the key regulators? Plant Growth Regul. 32: 27–39. http://dx.doi.org/10.1023/A:1006314001430CrossrefGoogle Scholar

  • [25] Rozema J., Staaij J., Björn L.O. & Caldwell M. 1997. UV-B as an environmental factor in plant life: stress and regulation. Tree 12: 23–28. Google Scholar

  • [26] Schaller J., Brackhage C. & Dudel E. 2012. Silicon availability changes structural carbon ratio and phenol content of grasses. Environ. Exp. Bot. 77: 283–287. http://dx.doi.org/10.1016/j.envexpbot.2011.12.009Web of ScienceCrossrefGoogle Scholar

  • [27] Schaller J., Brackhage C., Bäucker E. & Dudel E.G. 2013. UV-screening of grasses by plant silica layer? J. Biosci. 38: 413–416. http://dx.doi.org/10.1007/s12038-013-9303-1Web of ScienceCrossrefGoogle Scholar

  • [28] Shen X., Lix X., Li Z., Duan L. & Eneji A.E. 2010a. Growth, physiological attributes and antioxidant enzyme activities in soybean seedlings treated with or without silicon under UV-B radiation stress. J. Agron. Crop Sci. 196: 431–439. http://dx.doi.org/10.1111/j.1439-037X.2010.00428.xWeb of ScienceCrossrefGoogle Scholar

  • [29] Shen X., Zhou Y., Duan L., Li Z., Eneji A.E. & Li J. 2010b. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol. 167: 1248–1252. http://dx.doi.org/10.1016/j.jplph.2010.04.011CrossrefGoogle Scholar

  • [30] Shen X., Zhaohu L., Duan L., Eneji A.E. & Li J. 2014. Silicon mitigates ultraviolet-B radiation stress on soybean by enhancing chlorophyll and photosynthesis and reducing transpiration. J. Plant Nutr. 37: 837–849. http://dx.doi.org/10.1080/01904167.2013.873459CrossrefWeb of ScienceGoogle Scholar

  • [31] Singleton V.L. & Rossi J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158. Google Scholar

  • [32] Wellburn A.R. 1994. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. J. Plant Physiol. 144: 307–313. http://dx.doi.org/10.1016/S0176-1617(11)81192-2CrossrefGoogle Scholar

  • [33] Wu X.C., Chen Y.K., Li Q.S., Fang C.X., Xiong J. & Lin W.X. 2009. Effects of silicon nutrition on phenolic metabolization of rice (Oryza sativa L.) exposed to enhanced ultraviolet-B. Chin. Agric. Sci. Bull. 25: 225–230. Google Scholar

  • [34] Yao X., Chu J., Kunzheng C., Liu L., Shi J. & Geng W. 2011. Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biol. Trace Elem. Res. 143: 507–517. http://dx.doi.org/10.1007/s12011-010-8859-yCrossrefWeb of ScienceGoogle Scholar

  • [35] Yu G.H., Li W., Yuan Z.Y., Cui H.Y., Lv C.G, Gao Z.P., Han B., Gong Y.Z. & Chen G.X. 2013. The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica 51: 33–44. http://dx.doi.org/10.1007/s11099-012-0081-zCrossrefWeb of ScienceGoogle Scholar

  • [36] Zancan S., Cesco S. & Ghisi R. 2006. Effect of UV-B radiation on iron content and distribution in maize plants. Environ. Exp. Botany 55: 266–272. http://dx.doi.org/10.1016/j.envexpbot.2004.11.004CrossrefGoogle Scholar

  • [37] Zlatev Z.S., Lidon F.J.C. & Kaimakanova M. 2012. Plant physiological responses to UV-B radiation. Emir. J. Food Agric. 24: 481–501. http://dx.doi.org/10.9755/ejfa.v24i6.481501CrossrefGoogle Scholar

About the article

Published Online: 2014-11-07

Published in Print: 2014-10-01


Citation Information: Biologia, Volume 69, Issue 10, Pages 1349–1355, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-014-0432-2.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in