Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 10

Issues

Sex chromosome composition revealed in Characidium fishes (Characiformes: Crenuchidae) by molecular cytogenetic methods

Marlon Pazian
  • Laboratório de Biologia e Genética de Peixes, Departamento de Morfologia, Instituto de Biocięncias, Universidade Estadual Paulista (UNESP), Distrito de Rubião Júnior S/N, Botucatu, SP, CEP 18618-000, Brasil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claudio Oliveira
  • Laboratório de Biologia e Genética de Peixes, Departamento de Morfologia, Instituto de Biocięncias, Universidade Estadual Paulista (UNESP), Distrito de Rubião Júnior S/N, Botucatu, SP, CEP 18618-000, Brasil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fausto Foresti
  • Laboratório de Biologia e Genética de Peixes, Departamento de Morfologia, Instituto de Biocięncias, Universidade Estadual Paulista (UNESP), Distrito de Rubião Júnior S/N, Botucatu, SP, CEP 18618-000, Brasil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-07 | DOI: https://doi.org/10.2478/s11756-014-0434-0

Abstract

The W chromosome of the fishes Characidium cf. fasciatum, Characidium sp. and Characidium cf. gomesi is heterochromatic, as is usually seen in most Characidium species. Samples of W-chromatin were collected by mechanical microdissection and amplified by DOP-PCR (degenerate oligonucleotide-primed polymerase chain reaction), to be used as painting probes (DCg and CgW) and for sequence analysis. FISH (fluorescence in situ hybridization) with DCg probe painted the whole W chromosome, the pericentromeric region of Z chromosomes and the terminal region of B chromosomes. DOP-PCR-generated fragments were cloned, sequenced and tested by in situ hybridization, but only CgW4 produced positive hybridization signals. Clone sequence analysis recovered seven distinct sequences, of which six did not reveal any similarity to other known sequences in the GenBank or GIRI databases. Only CgW9 clone sequence was recognized as probably derived from a Helitron-transposon similar to that found in the genome of the zebrafish Danio rerio. Our results show that the composition of Characidium’s W chromosome does seem rich in repetitive sequences as well as other W chromosomes found in several species with a ZW sex-determining mechanism.

Keywords: fish; W chromosome paint; repetitive DNA; female heterogamety

  • [1] Bugrov A.G., Karamysheva T.V., Rubtsov D.N., Andreenkova O.V. & Rubtsov N.B. 2004. Comparative FISH analysis of distribution of B chromosome repetitive DNA in A and B chromosomes in two subspecies of Podisma sapporensis (Orthoptera, Acrididae). Cytogenet. Genome Res. 106: 284–288. DOI: 10.1159/000079300 http://dx.doi.org/10.1159/000079300CrossrefGoogle Scholar

  • [2] Camacho J.P., Schmid M. & Cabrero J.B. 2011. B Chromosomes and sex in animals. Sex. Dev. 5: 155–166. DOI: 10.1159/000324930 http://dx.doi.org/10.1159/000324930CrossrefGoogle Scholar

  • [3] Cermak T., Kubat Z., Hobza R., Koblizkova A., Widmer A., Macas J., Vyskotand B. & Kejnovsky E. 2008. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res. 16: 961–976. DOI: 10.1007/s10577-008-1254-2 http://dx.doi.org/10.1007/s10577-008-1254-2CrossrefGoogle Scholar

  • [4] Charlesworth D., Charlesworth B. & Marais G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95: 118–128. DOI: 10.1038/sj.hdy.6800697 http://dx.doi.org/10.1038/sj.hdy.6800697CrossrefWeb of ScienceGoogle Scholar

  • [5] Cioffi M.B., Camacho J.P.M. & Bertollo L.A.C. 2011. Repetitive DNAs and differentiation of sex chromosomes in Neotropical fishes. Cytogenet. Genome Res. 132: 188–194. DOI: 10.1159/000321571 http://dx.doi.org/10.1159/000321571Web of ScienceCrossrefGoogle Scholar

  • [6] Cioffi M.B., Moreira-Filho O., Almeida-Toledo L.F. & Bertollo L.A.C. 2012. The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J. Fish Biol. 80: 2125–2139. DOI: 10.1111/j.1095-8649.2012.03272.x http://dx.doi.org/10.1111/j.1095-8649.2012.03272.xCrossrefWeb of ScienceGoogle Scholar

  • [7] Ferreira D.C. Porto-Foresti F., Oliveira C. & Foresti F. 2011. Transposable elements as a potential source for understanding the fish genome. Mobile Genetic Elements 1: 1–6. DOI: 10.4161/mge.1.2.16731 http://dx.doi.org/10.4161/mge.1.1.15320CrossrefGoogle Scholar

  • [8] Foresti F., Almeida-Toledo L.F. & Toledo S.A. 1981. Polymorphic nature of nucleolus organizer regions in fishes. Cytogenet. Cell Genet. 31(3): 137–144. PMID: 6173166 http://dx.doi.org/10.1159/000131639Google Scholar

  • [9] Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S. & Marec F. 2007. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116: 135–145. DOI: 10.1007/s00412-006-0086-0 http://dx.doi.org/10.1007/s00412-006-0086-0Web of ScienceCrossrefGoogle Scholar

  • [10] Green D.M., Zeyl C.W. & Sharbel T.F. 1993. The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. J. Evol. Biol. 6: 417–441. DOI: 10.1046/j.1420-9101.1993.6030417.x http://dx.doi.org/10.1046/j.1420-9101.1993.6030417.xCrossrefGoogle Scholar

  • [11] Jesus C.M., Galetti P.M., Valentini S.R. & Moreira-Filho O. 2003. Molecular characterization and chromosomal localization of two families of satellite DNA in Prochilodus lineatus (Pisces, Prochilodontidae), a species with B chromosomes. Genetica 118: 25–32. DOI: 10.1023/A:1022986816648 http://dx.doi.org/10.1023/A:1022986816648CrossrefGoogle Scholar

  • [12] Kejnovsky E., Hobza R., Cermák T., Kubát Z. & Vyskot B. 2009. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102: 533–541. DOI: 10.1038/hdy.2009.17 http://dx.doi.org/10.1038/hdy.2009.17Web of ScienceCrossrefGoogle Scholar

  • [13] Machado T.C., Pansonato-Alves J.C., Pucci M.B., Nogaroto V., Almeida M.C., Oliveira C., Foresti F., Bertollo L.A.C., Moreira-Filho O., Artoni R.F. & Vicari M.R. 2011. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae). BMC Genet. 12: 65. DOI: 10.1186/1471-2156-12-65 http://dx.doi.org/10.1186/1471-2156-12-65Web of ScienceCrossrefGoogle Scholar

  • [14] Matsubara K., Tarui H., Toriba M., Yamada K., Umehara C.N. Agata K. & Matsuda Y. 2006. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and stepwise differentiation of snake sex chromosomes. Proc. Natl. Acad. Sci. USA 103: 18190–18195. DOI: 10.1073/pnas.0605274103 http://dx.doi.org/10.1073/pnas.0605274103CrossrefGoogle Scholar

  • [15] Mestriner C.A., Galetti P.M., Valentini S.R., Ruiz, I.R.G., Abel L.D.S., Moreira-Filho O. & Camacho J.P.M. 2000. Structural and functional evidence that a B chromosome in the characid fish Astyanax scabripinnis is an isochromosome. Heredity 85: 1–9. DOI: 10.1046/j.1365-2540.2000.00702.x http://dx.doi.org/10.1046/j.1365-2540.2000.00702.xCrossrefGoogle Scholar

  • [16] Nakayama I., Foresti F., Tewari R., Schartl M. & Chourrout D. 1994. Sex chromosome polymorphism and heterogametic males revealed by two cloned DNA probes in the ZW/ZZ fish Leporinus elongatus. Chromosoma 103: 31–39. DOI: 10.1007/BF00364723 http://dx.doi.org/10.1007/BF00364723CrossrefGoogle Scholar

  • [17] Nanda I., Feichtinger W., Schmid M., Schröder J.H., Zischler H. & Epplen, J.T. 1990. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. J. Mol. Evol. 30: 456–462. DOI: 10.1007/BF02101117 http://dx.doi.org/10.1007/BF02101117CrossrefGoogle Scholar

  • [18] Nanda I., Volff J.N., Weis S., Korting C., Froschauer A., Schimid M. & Schartl M. 2000. Amplification of a long terminal repeat-like element on the Y chromosome of the platyfish, Xiphophorus maculatus. Chromosoma 109: 173–180. DOI: 10.1007/s004120050425 http://dx.doi.org/10.1007/s004120050425CrossrefGoogle Scholar

  • [19] Pansonato-Alves J.C., Vicari M.R., Oliveira C. & Foresti F. 2011. Chromosomal diversification in populations of Characidium cf. gomesi (Teleostei: Crenuchidae). J. Fish Biol. 78: 183–194. DOI: 10.1111/j.1095-8649.2010.02847.x. http://dx.doi.org/10.1111/j.1095-8649.2010.02847.xCrossrefWeb of ScienceGoogle Scholar

  • [20] Parise-Maltempi P.P., Martins C., Oliveira C. & Foresti F. 2007. Identification of a new repetitive element in the sex chromosomes of Leporinus elongatus (Teleostei: Characiformes: Anostomidae): new insights into the sex chromosomes of Leporinus. Cytogenet. Genome Res. 116: 218–223. DOI: 10.1159/000098190 http://dx.doi.org/10.1159/000098190Web of ScienceCrossrefGoogle Scholar

  • [21] Pazian M.F., Shimabukuro-Dias C.K., Pansonato-Alves J.C., Oliveira C. & Foresti F. 2013. Chromosome painting of Z and W sex chromosomes in Characidium (Characiformes, Crenuchidae). Genetica 141: 1–9. DOI: 10.1007/s10709-013-9701-1. http://dx.doi.org/10.1007/s10709-013-9701-1CrossrefWeb of ScienceGoogle Scholar

  • [22] Pinkel D., Straume T. & Gray J.W. 1986. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83: 2934–2938. PMCID: PMC323421 http://dx.doi.org/10.1073/pnas.83.9.2934Google Scholar

  • [23] Poulter R.T., Goodwin T.J. & Butler M.I. 2003. Vertebrate helentrons and other novel Helitrons. Gene 313: 201–212. DOI: 10.1016/S0378-1119(03)00679-6 http://dx.doi.org/10.1016/S0378-1119(03)00679-6CrossrefGoogle Scholar

  • [24] Rubtsov N.B., Karamysheva T.V., Andreenkova O.V., Bochkaerev M.N., Kartavtseva I.V., Roslik G.V. & Borissov Y.M. 2004. Comparative analysis of micro and macro B chromosomes in the Korean field mouse Apodemus peninsulae (Rodentia, Murinae) performed by chromosome microdissection and FISH. Cytogenet Genome Res. 106: 289–294. DOI: 10.1159/000079301 http://dx.doi.org/10.1159/000079301CrossrefGoogle Scholar

  • [25] Sharbel T.F., Green D.M. & Houben A. 1998. B-chromosome origin in the endemic New Zealand frog Leiopelma hochstetteri through sex chromosome evolution. Genome 41(1): 14–22. DOI: 10.1139/g97-091 http://dx.doi.org/10.1139/gen-41-1-14CrossrefGoogle Scholar

  • [26] Steinemann M. & Steinemann S. 1992. Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc. Natl. Acad. Sci. USA 89: 7591–7595. DOI: 10.1073/pnas.89.16.7591 http://dx.doi.org/10.1073/pnas.89.16.7591CrossrefGoogle Scholar

  • [27] Sumner A.T. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306. DOI: 10.1016/0014-4827(72)90558-7 http://dx.doi.org/10.1016/0014-4827(72)90558-7CrossrefGoogle Scholar

  • [28] Takehana Y., Naruse K., Asada Y., Matsuda Y., Shin I.T., Kohara Y., Fujiyama A., Hamaguchi S. & Sakaizumi M. 2012. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosome Res. 20: 71–81. DOI: 10.1007/s10577-011-9259-7 http://dx.doi.org/10.1007/s10577-011-9259-7Web of ScienceCrossrefGoogle Scholar

  • [29] Teruel M., Cabrero J., Montiel E.E., Acosta M.J., Sánchez A. & Camacho J.P.M. 2009. Microdissection and chromosome painting of X and B chromosomes in Locusta migratoria. Chromosome Res. 17: 11–18. DOI: 10.1007/s10577-008-9001-2 http://dx.doi.org/10.1007/s10577-008-9001-2CrossrefGoogle Scholar

  • [30] Vicari M.R., Artoni R.F., Moreira-Filho O. & Bertollo L.A.C. 2008. Diversification of a ZZ/ZW sex chromosome system in Characidium fish (Crenuchidae, Characiformes). Genetica 134: 311–317. DOI: 10.1007/s10709-007-9238-2 http://dx.doi.org/10.1007/s10709-007-9238-2CrossrefWeb of ScienceGoogle Scholar

  • [31] Vicente V.E., Bertollo L.A.C., Valentini, S.R. & Moreira-Filho O. 2003. Origin and differentiation of sex chromosome system in Parodon hilarii (Pisces, Parodontidae) satellite DNA, G and C-banding. Genetica 119: 115–120. DOI: 10.1023/A:1026082904672 http://dx.doi.org/10.1023/A:1026082904672CrossrefGoogle Scholar

  • [32] Volff J.N., Nanda I., Schmid M. & Schartl M. 2007. Governing sex determination in fgish: Regulatory putsches and ephemeral dictators. Sex. Dev. 1: 85–99. DOI: 10.1159/000100030 http://dx.doi.org/10.1159/000100030CrossrefWeb of ScienceGoogle Scholar

  • [33] Yoshida K., Terai Y., Mizoiri S., Aibara M., Nishihara H., Watanabe M., Kuroiwa A., Hirai H., Hirai Y., Matsuda Y. & Okada N. 2011. B Chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes. PLoS Genet. 7: e1002203. DOI: 10.1371/journal.pgen.1002203 http://dx.doi.org/10.1371/journal.pgen.1002203CrossrefWeb of ScienceGoogle Scholar

  • [34] Zhou Q., Froschauer A., Schultheis C., Schmidt C., Bienert G.P., Wenning M., Dettai A. & Volff J.N. 2006. Helitron transposons on the sex chromosomes of the platyfish Xiphophorus maculatus and their evolution in animal genomes. Zebrafish 3: 39–52. DOI: 10.1089/zeb.2006.3.39 http://dx.doi.org/10.1089/zeb.2006.3.39CrossrefGoogle Scholar

About the article

Published Online: 2014-11-07

Published in Print: 2014-10-01


Citation Information: Biologia, Volume 69, Issue 10, Pages 1410–1416, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-014-0434-0.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marcela Baer Pucci, Viviane Nogaroto, Luiz Antonio Carlos Bertollo, Orlando Moreira-Filho, and Marcelo Ricardo Vicari
Comparative Cytogenetics, 2018, Volume 12, Number 3, Page 421

Comments (0)

Please log in or register to comment.
Log in