Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Biologia



Weitere Optionen …
Band 69, Heft 10

Hefte

Effects of NaCl and Na2CO3 stresses on photosynthetic ability of Chlamydomonas reinhardtii

Zhaojiang Zuo
  • School of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Lin’an, 311300, China
  • College of Life Sciences, Nankai University, Tianjin, 300071, China
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Zhengzhen Chen / Yerong Zhu / Yanling Bai / Yong Wang
Online erschienen: 07.11.2014 | DOI: https://doi.org/10.2478/s11756-014-0437-x

Abstract

Chloride and carbonate salts are the main salts causing salinization and widely exist in aquatic environment, so algae may suffer from salinization stress for high water evaporation. In this study, in order to investigate and compare the toxic effects of the two salts on algal photosynthesis, we used NaCl and Na2CO3 to stress Chlamydomonas reinhardtii. Under the two salt stresses, the content of O2−· and H2O2 in the cells was increased significantly, and it was much higher in Na2CO3 treatment than in NaCl treatment at the same Na+ concentration. The absorbance spectra and 4th derivative spectra of photosynthetic pigments were declined under 300 mM NaCl and 25 mM Na2CO3 stresses, and remarkably changed under 50 mM and 100 mM Na2CO3 stresses. When the cells stressed by the two salts, the maximum quantum yield (Fv/Fm), electron transport rate (ETR) and photochemical quenching (qP) were reduced markedly, but the nonphotochemical dissipation (NPQ) was increased markedly. At the same Na+ concentration, Na2CO3 stress had stronger toxic effects on photosynthetic ability than NaCl stress.

Keywords: absorbance spectrum; photosynthetic ability; photosynthetic pigment; reactive oxygen species; salt stress

  • [1] Affenzeller M.J., Darehshouri A., Andosch A., Lütz C. & Lütz-Meindl U. 2009. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulate. J. Exp. Bot. 60: 939–954. http://dx.doi.org/10.1093/jxb/ern348CrossrefGoogle Scholar

  • [2] Aguirre-Gómez R., Weeks A.R. & Boxall S.R. 2001. The identi-fication of phytoplankton pigments from absorption spectra. Int. J. Remote Sens. 22: 315–338. http://dx.doi.org/10.1080/014311601449952CrossrefGoogle Scholar

  • [3] Allakhverdiev S.I., Sakamoto A., Nishiyama Y., Inaba M. & Murata N. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123: 1047–1056. http://dx.doi.org/10.1104/pp.123.3.1047CrossrefGoogle Scholar

  • [4] Axelsson L., Larsson C. & Ryberg H. 1999. Affinity, capacity and oxygen sensitivity of two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant Cell Environ. 22: 969–978. http://dx.doi.org/10.1046/j.1365-3040.1999.00470.xCrossrefGoogle Scholar

  • [5] Bérubé K.A., Dodge J.D. & Ford T.W. 1999. Effects of chronic salt stress on the ultrastructure of Dunaliella bioculata (Chlorophyta, Volvocales): mechanisms of response and recovery. Eur. J. Phycol. 34: 117–123. http://dx.doi.org/10.1080/09670269910001736172CrossrefGoogle Scholar

  • [6] Bhatti S. & Colman B. 2011. Evidence for the occurrence of photorespiration in synurophyte algae. Photosynth Res. 109: 251–256. http://dx.doi.org/10.1007/s11120-011-9639-zCrossrefGoogle Scholar

  • [7] Bilger W. & Björkman O. 1991. Temperature dependence of violaxanthin deepoxidation and non-photochemical fluorescence quenching in intact leaves of Hedera canariensis and Malva parviflora L. Planta 184: 226–234. http://dx.doi.org/10.1007/BF01102422CrossrefGoogle Scholar

  • [8] Bors W., Lengfelder E. & Saran M. 1977. Oxidation of hydroxylamine to nitrite as an assay for the combined presence of superoxide anions and hydroxyl radicals. Biochem. Bioph. Res. Co. 75: 973–979. http://dx.doi.org/10.1016/0006-291X(77)91477-2CrossrefGoogle Scholar

  • [9] Brookes P.S., Yoon Y., Robotham J.L., Anders M.W. & Sheu S.S. 2004. Calcium, ATP, and ROS: a mitochondrial lovehate triangle. Am. J. Physiol. Cell Physiol. 287: 817–833. http://dx.doi.org/10.1152/ajpcell.00139.2004CrossrefGoogle Scholar

  • [10] Chen W.C., Cui P.J., Sun H.Y., Guo W.Q., Yang C.W., Jin H., Fang B. & Shi D.C. 2009. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Ind. Crop Prod. 30: 351–358. http://dx.doi.org/10.1016/j.indcrop.2009.06.007CrossrefGoogle Scholar

  • [11] Darehshouri A. & Lütz-Meindl U. 2010. H2O2 localization in the green alga Micrasterias after salt and osmotic stress by TEM-coupled electron energy loss spectroscopy. Protoplasma 239: 49–56. http://dx.doi.org/10.1007/s00709-009-0081-4CrossrefGoogle Scholar

  • [12] Demetriou G., Neonaki C., Navakoudis E. & Kotzabasis K. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus: the protective role of polyamines. Biochim. Biophys. Acta 1767: 272–280. http://dx.doi.org/10.1016/j.bbabio.2007.02.020CrossrefGoogle Scholar

  • [13] Dos Santosa J.S., de Oliveirab E., Brunsc R.E. & Gennari R.F. 2004. Evaluation of the salt accumulation process during inundation in water resource of Contas river basin (Bahia-Brazil) applying principal component analysis. Water Res. 38: 1579–1585. http://dx.doi.org/10.1016/j.watres.2003.12.006CrossrefGoogle Scholar

  • [14] Doyle S.M., Diamond M. & Mc Cabe P.F. 2010. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J. Exp. Bot. 61: 473–482. http://dx.doi.org/10.1093/jxb/erp320CrossrefGoogle Scholar

  • [15] Ehleringer J. 1981. Leaf absorptances of Mohave and Sonoran desert plants. Oecologia 49: 366–370. http://dx.doi.org/10.1007/BF00347600CrossrefGoogle Scholar

  • [16] Fedina I.S., Grigorova I.D. & Georgieva K.M. 2003. Response of barley seedlings to UVB radiation as affected by NaCl. J. Plant Physiol. 160: 205–208. http://dx.doi.org/10.1078/0176-1617-00760CrossrefGoogle Scholar

  • [17] Foyer C.H. & Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875. http://dx.doi.org/10.1105/tpc.105.033589CrossrefGoogle Scholar

  • [18] Garnier F., Dubacq J.P. & Thomas J.C. 1994. Evidence for a transient association of new proteins with the Spirulina maxima phycobilisomes in relation to light intensity. Plant Physiol. 106: 747–754. Google Scholar

  • [19] Genty B., Briantais J.M. & Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92. http://dx.doi.org/10.1016/S0304-4165(89)80016-9CrossrefGoogle Scholar

  • [20] Gorman D.S. & Levine R.P. 1965. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardii. Proc. Natl. Acad. Sci. U. S. A.54: 1665–1669. http://dx.doi.org/10.1073/pnas.54.6.1665CrossrefGoogle Scholar

  • [21] Goyal A. 2007. Osmoregulation in Dunaliella. II. Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol. Biochem. 45: 705–710. http://dx.doi.org/10.1016/j.plaphy.2007.05.009CrossrefGoogle Scholar

  • [22] Guan B., Zhou D., Zhang H., Tian Y., Japhet W. & Wang P. 2009. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. J Arid Environ. 73: 135–138. http://dx.doi.org/10.1016/j.jaridenv.2008.08.009CrossrefGoogle Scholar

  • [23] Huege J., Goetze J., Schwarz D., Bauwe H., Hagemann M. & Kopka J. 2011. Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS One 6: e16278. http://dx.doi.org/10.1371/journal.pone.0016278CrossrefGoogle Scholar

  • [24] Ivanov A.G., Hurry V., Sane P.V., Öquist G. & Huner N.P.A. 2008. Reaction centre quenching of excess light energy and photoprotection of photosystem II. J. Plant Biol. 51: 85–96. http://dx.doi.org/10.1007/BF03030716CrossrefGoogle Scholar

  • [25] Jianga Z.Y., Woollarda A.C.S. & Wolff S.P. 1990. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 268: 69–71. http://dx.doi.org/10.1016/0014-5793(90)80974-NCrossrefGoogle Scholar

  • [26] Kahn N.A. 2003. NaCl inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat. Biol. Plant. 47: 437–444. http://dx.doi.org/10.1023/B:BIOP.0000023890.01126.43CrossrefGoogle Scholar

  • [27] Krall J.P. & Edwards G.E. 1992. Relationship between photosystem II activity and CO2 fixation. Physiol. Plant 86: 180–187. http://dx.doi.org/10.1111/j.1399-3054.1992.tb01328.xCrossrefGoogle Scholar

  • [28] Liu X.D. & Shen Y.G. 2006. Salt shock induces state II transition of the photosynthetic apparatus in dark-adapted Dunaliella salina cells. Environ. Exp. Bot. 57: 19–24. http://dx.doi.org/10.1016/j.envexpbot.2005.04.001CrossrefGoogle Scholar

  • [29] Lutts S., Kinet J.M. & Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389–398. http://dx.doi.org/10.1006/anbo.1996.0134CrossrefGoogle Scholar

  • [30] Manivannan P., Jaleel C.A., Sankar B., Kishorekumar A., Murali P.V., Somasundaram R. & Panneerselvam R. 2008. Mineral uptake and biochemical changes in Helianthus annuus under treatment with different sodium salts. Colloid. Surface. B Biointerfaces 62: 58–63. http://dx.doi.org/10.1016/j.colsurfb.2007.09.019CrossrefGoogle Scholar

  • [31] Maxwell K. & Johnson G.N. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51: 659–668. http://dx.doi.org/10.1093/jexbot/51.345.659CrossrefGoogle Scholar

  • [32] Nedelcu A.M. 2006. Evidence for p53-like-mediated stress responses in green algae. FEBS Lett. 580: 3013–3017. http://dx.doi.org/10.1016/j.febslet.2006.04.044CrossrefGoogle Scholar

  • [33] Olischläger M., Bartsch I., Gutow L. & Wiencke C. 2013. The effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool scenario. Phycol. Res. 61: 180–190. http://dx.doi.org/10.1111/pre.12006CrossrefGoogle Scholar

  • [34] Orosa M., Valero J.F., Herrero C. & Abalde J. 2001. Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol. Lett. 23: 1079–1085. http://dx.doi.org/10.1023/A:1010510508384CrossrefGoogle Scholar

  • [35] Peers G., Truong T.B., Ostendorf E., Busch A., Elrad D., Grossman A.R., Hippler M. & Niyogi K.K. 2009. An ancient lightharvesting protein is critical for the regulation of algal photosynthesis. Nature 462: 518–522. http://dx.doi.org/10.1038/nature08587CrossrefGoogle Scholar

  • [36] Pelah D., Sintov A. & Cohen E. 2004. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J. Microb. Biot. 20: 483–486. http://dx.doi.org/10.1023/B:WIBI.0000040398.93103.21CrossrefGoogle Scholar

  • [37] Pérez-Pérez M.E., Couso I. & Crespo J.L. 2012. Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy 8: 376–388. http://dx.doi.org/10.4161/auto.18864CrossrefGoogle Scholar

  • [38] Pospíšil P. 2009. Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1787: 1151–1160. http://dx.doi.org/10.1016/j.bbabio.2009.05.005CrossrefGoogle Scholar

  • [39] Pozniakovsky A.I., Dmitry A., Knorre D.A., Markova O.V., Hyman A.A., Skulachev V.P. & Severin F.F. 2005. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J. Cell Biol. 168: 257–269. http://dx.doi.org/10.1083/jcb.200408145CrossrefGoogle Scholar

  • [40] Rebeiz C.A. 2002. Analysis of intermediates and end products of the chlorophyll biosynthetic pathway, pp. 111–155. In: Witty M., (ed.), Heme Chlorophyll and Bilins, Methods and Protocols, Humana Press, Totowa NJ. Google Scholar

  • [41] Rohácek K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and natural relationships. Photosynthetica 40: 13–29. http://dx.doi.org/10.1023/A:1020125719386CrossrefGoogle Scholar

  • [42] Sayed O.H. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41: 321–330. http://dx.doi.org/10.1023/B:PHOT.0000015454.36367.e2CrossrefGoogle Scholar

  • [43] Schreiber U., Schliwa U. & Bilger W. 1986. Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10: 51–62. http://dx.doi.org/10.1007/BF00024185CrossrefGoogle Scholar

  • [44] Sereda J., Bogard M., Hudson J., Helps D. & Dessouki T. 2011. Climate warming and the onset of salinization: Rapid changes in the limnology of two northern plains lakes. Limnologica 4: 1–9. http://dx.doi.org/10.1016/j.limno.2010.03.002CrossrefGoogle Scholar

  • [45] Shannon M.C., Grieve C.M. & Francois L.E. 1994. Whole-plant response to salinity, pp. 199–224. In: Wilkinson R.E. (ed.), Plant-Environment Interactions. Marcel Dekker, New York. Google Scholar

  • [46] Shao N., Beck C.F., Lemaire S.D. & Liszkay A.K. 2008. Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii. Planta 228: 1055–1066. http://dx.doi.org/10.1007/s00425-008-0807-0CrossrefGoogle Scholar

  • [47] Shi D.C. & Sheng Y.M. 2005. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ. Exp. Bot. 54: 8–21. http://dx.doi.org/10.1016/j.envexpbot.2004.05.003CrossrefGoogle Scholar

  • [48] Smith C.M. & Alberte R.S. 1994. Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species. Mar. Biol. 118: 511–521. http://dx.doi.org/10.1007/BF00350308CrossrefGoogle Scholar

  • [49] Sudhir P.R., Pogoryelov D., Kovacs L., Garab G. & Murthy S.D.S. 2005. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J. Biochem. Mol. Biol. 38: 481–485. http://dx.doi.org/10.5483/BMBRep.2005.38.4.481CrossrefGoogle Scholar

  • [50] Sultanaa N., Ikeda T. & Itoh R. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. Exp. Bot. 42: 211–220. http://dx.doi.org/10.1016/S0098-8472(99)00035-0CrossrefGoogle Scholar

  • [51] Sültemeyer D., Biehler K. & Fock H.P. 1993. Evidence for the contribution of pseudocyclic photophosphorylation to the energy requirement of the mechanism for concentrating inorganic carbon in Chlamydomonas. Planta 189: 235–242. http://dx.doi.org/10.1007/BF00195082CrossrefGoogle Scholar

  • [52] Tang D., Shi S., Li D., Hu C. & Liu Y. 2007. Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J. Arid Environ. 71: 312–320. http://dx.doi.org/10.1016/j.jaridenv.2007.05.004CrossrefGoogle Scholar

  • [53] Tarchoune I., Sgherri C., Izzo R., Lachaal M., Ouerghi Z. & Izzo F.N. 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol. Biochem. 48: 772–777. http://dx.doi.org/10.1016/j.plaphy.2010.05.006CrossrefGoogle Scholar

  • [54] Telma E., Scarpeci T.E., Zanor M.I., Carrillo N., Mueller-Roeber B. & Valle E.M. 2008. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol. Biol. 66: 361–378. http://dx.doi.org/10.1007/s11103-007-9274-4CrossrefGoogle Scholar

  • [55] Vardi A., Berman-Frank I., Rozenberg T., Hadas O., Kaplan A. & Levine A. 1999. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9: 1061–1064. http://dx.doi.org/10.1016/S0960-9822(99)80459-XCrossrefGoogle Scholar

  • [56] Yang C.W., Jianaer A., Li C.Y., Shi D.C. & Wang D.L. 2008. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica 46: 273–278. http://dx.doi.org/10.1007/s11099-008-0047-3CrossrefGoogle Scholar

  • [57] Yang C.W., Xu H.H., Wang L.L., Liu J., Shi D.C. & Wang D.L. 2009. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica 47: 79–86. http://dx.doi.org/10.1007/s11099-009-0013-8CrossrefGoogle Scholar

  • [58] Yoshida K., Igarashi E., Wakatsuki E., Miyamoto K. & Hirata K. 2004. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci. 167: 1335–1341. http://dx.doi.org/10.1016/j.plantsci.2004.07.002CrossrefGoogle Scholar

  • [59] Yu R., Liu T., Xu Y., Zhu C., Zhang Q., Qu Z., Liu X. & Li C. 2010. Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China. Agr.Water Manage. 97: 1952–1960. http://dx.doi.org/10.1016/j.agwat.2010.03.009CrossrefGoogle Scholar

  • [60] Zalidis G. 1998. Management of river water for irrigation to mitigate soil salinization on a coastal wetland. J. Environ. Manage. 54: 161–167. http://dx.doi.org/10.1006/jema.1998.0226CrossrefGoogle Scholar

  • [61] Zhang Y., Xu Q. & Xi B. 2013. Effect of NaCl salinity on the growth, metabolites, and antioxidant system of Microcystis aeruginosa. J. Freshwat. Ecol. 28: 477–487. http://dx.doi.org/10.1080/02705060.2013.782579CrossrefGoogle Scholar

  • [62] Zolla L. & Rinalducci S. 2002. Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry 41: 14391–14402. http://dx.doi.org/10.1021/bi0265776CrossrefGoogle Scholar

  • [63] Zuo Z.J., Zhu Y.R., Bai Y.L. & Wang Y. 2012a. Volatile communication between Chlamydomonas reinhardtii cells under salt stress. Biochem. Syst. Ecol. 40: 19–24. http://dx.doi.org/10.1016/j.bse.2011.09.007CrossrefGoogle Scholar

  • [64] Zuo Z., Zhu Y., Bai Y. & Wang Y. 2012b. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiol. Biochem. 51: 175–184. http://dx.doi.org/10.1016/j.plaphy.2011.11.003CrossrefGoogle Scholar

Artikelinformationen

Online erschienen: 07.11.2014

Erschienen im Druck: 01.10.2014


Quellenangabe: Biologia, Band 69, Heft 10, Seiten 1314–1322, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-014-0437-x.

Zitat exportieren

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Xu-mei Jia, Yan-fang Zhu, Ya Hu, Rui Zhang, Li Cheng, Zu-lei Zhu, Tong Zhao, Xiayi Zhang, and Yan-xiu Wang
Horticulture Research, 2019, Jahrgang 6, Nummer 1
[2]
Yuandan Ma, Bin Wang, Rumin Zhang, Yan Gao, Xiuying Zhang, Yan Li, and Zhaojiang Zuo
Industrial Crops and Products, 2019, Jahrgang 135, Seite 352
[3]
Zhaojiang Zuo
Frontiers in Microbiology, 2019, Jahrgang 10
[4]
Yueting Chen, Yuanyuan Weng, Min Zhou, Yiyu Meng, Jialu Liu, Lin Yang, and Zhaojiang Zuo
Ecotoxicology and Environmental Safety, 2019, Jahrgang 167, Seite 435
[5]
Xu-mei Jia, Hai Wang, Sofkova Svetla, Yan-fang Zhu, Ya Hu, Li Cheng, Tong Zhao, and Yan-xiu Wang
Scientia Horticulturae, 2019, Jahrgang 245, Seite 154
[6]
Silan Chen, Tiefeng Zheng, Chaolin Ye, Wulan Huannixi, Zumulati Yakefu, Yiyu Meng, Xin Peng, Zhengfeng Tian, Junhao Wang, Yuandan Ma, Youyou Yang, Zhongqing Ma, and Zhaojiang Zuo
Ecotoxicology and Environmental Safety, 2018, Jahrgang 163, Seite 594
[7]
Xiang Ji, Jie Cheng, Donghui Gong, Xiujuan Zhao, Yun Qi, Yongning Su, and Wenchao Ma
Science of The Total Environment, 2018, Jahrgang 633, Seite 593
[8]
YANG Wangting, ZHAO Jingxian, XU Qinghuan, ZHOU Lv, GAN Liping, and ZUO Zhaojiang
Journal of Lake Sciences, 2018, Jahrgang 30, Nummer 2, Seite 449
[9]
Jianhua Fan and lvhong Zheng
Journal of Bioscience and Bioengineering, 2017, Jahrgang 124, Nummer 3, Seite 302
[10]
Mustafa A. Fawzy, Dalia A. Abdel-Wahab, and Awatief F. Hifney
Egyptian Journal of Basic and Applied Sciences, 2017, Jahrgang 4, Nummer 1, Seite 30
[11]
Jingxian Zhao, Lin Yang, Lv Zhou, Yan Bai, Bin Wang, Ping Hou, Qinghuan Xu, Wangting Yang, and Zhaojiang Zuo
Phycologia, 2016, Jahrgang 55, Nummer 6, Seite 696
[12]
Qinghuan Xu, Lin Yang, Wangting Yang, Yan Bai, Ping Hou, Jingxian Zhao, Lv Zhou, and Zhaojiang Zuo
Ecotoxicology and Environmental Safety, 2017, Jahrgang 135, Seite 191
[13]
Li-Fen Huang, Ji-Yu Lin, Kui-You Pan, Chun-Kai Huang, and Ying-Kai Chu
International Journal of Molecular Sciences, 2015, Jahrgang 16, Nummer 8, Seite 19308

Kommentare (0)