Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 10

Issues

Biodegradation of 2,4,6-trinitrotoluene (TNT) under sulfate and nitrate reducing conditions

Raj Boopathy
Published Online: 2014-11-07 | DOI: https://doi.org/10.2478/s11756-014-0441-1

Abstract

Anaerobic degradation of 2,4,6-trinitrotoluene (TNT) was studied under sulfate- and nitrate-reducing conditions using enrichment cultures developed from a TNT-contaminated soil from the Louisiana Army Ammunition Plant (LAAP) in Minden, Louisiana, USA. The soil samples were enriched using mineral salt media with either nitrate or sulfate as electron acceptors in the presence of TNT under strict anaerobic conditions. The enriched samples were experimented with TNT as either the sole source of carbon or nitrogen and also under co-metabolic conditions with molasses as co-substrate. The results revealed that TNT was removed under both electron acceptor conditions. However, the TNT degradation efficiency was significantly higher under sulfate-reducing conditions than the nitrate-reducing conditions. Under sulfate-reducing conditions, TNT removal was faster when molasses was used as co-substrate. The metabolic analysis showed that TNT was mineralized and the major end product was acetic acid, CO2, and ammonia. A soil slurry reactor with TNT-contaminated soil showed more than 90% of TNT removal within 60 days of incubation.

Keywords: trinitrotoluene; biodegradation; sulfate-reducing condition; nitrate-reducing condition; mineralization; soil slurry reactor

  • [1] Balch W.E. & Wolfe R.S. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane sulfonic acid (HS-CoM) dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781–789. Google Scholar

  • [2] Battersby N.S. & Wilson V. 1989. Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl. Environ. Microbiol. 55: 433–439. Google Scholar

  • [3] Boopathy R. 2007. Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulfate reducing bacteria, pp. 483–502: In: Barton L & Hamilton A (eds) Sulphate-reducing Bacteria: Environmental Engineering and Systems. Cambridge University Press, Cambridge, U.K. http://dx.doi.org/10.1017/CBO9780511541490.018CrossrefGoogle Scholar

  • [4] Boopathy R. & Kulpa C.F. 1992. Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester. Curr. Microbiol. 25: 235–241. http://dx.doi.org/10.1007/BF01570724CrossrefGoogle Scholar

  • [5] Boopathy R. & Kulpa C.F. 1994. Biotransformation of 2,4,6-trinitrotoluene by a Methanococcus sp. (strain B) isolated from a lake sediment. Can. J. Microbiol. 40: 273–278. http://dx.doi.org/10.1139/m94-044CrossrefGoogle Scholar

  • [6] Boopathy R., Kulpa C.F. & Wilson M. 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl. Microbiol. Biotechnol. 39: 270–275. Google Scholar

  • [7] Boopathy R. & Manning J.F. 1996. Characterization of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by a sulfate-reducing bacterial consortium. Can. J. Microbiol. 42: 1203–1208. http://dx.doi.org/10.1139/m96-155CrossrefGoogle Scholar

  • [8] Boopathy R., Manning J., Montemagno C. & Kulpa C.F. 1994a. Metabolism of 2,4,6-trinitrotoluene by a Pseudomonas consortium under aerobic conditions. Curr. Microbiol. 28: 131–137. http://dx.doi.org/10.1007/BF01571053CrossrefGoogle Scholar

  • [9] Boopathy R., Wilson M., Montemagno C., Manning J. & Kulpa C.F. 1994b. Biological transformation of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT-contaminated soil. Biores. Technol. 47: 19–24. http://dx.doi.org/10.1016/0960-8524(94)90023-XCrossrefGoogle Scholar

  • [10] Boyd S.A., Shelton D.R., Berry D. & Tiedje J.M. 1983. Anaerobic biodegradation of phenolic compounds in digested sludge. Appl. Environ. Microbiol. 46: 50–54. Google Scholar

  • [11] Carpenter D.F., McCormick N.G., Cornell J.H. & Kaplan A.M. 1978. Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in activated sludge system. Appl. Environ. Microbiol. 35: 949–954. Google Scholar

  • [12] Clark B. & Boopathy R. 2007. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. J. Hazard. Mater. 143: 643–648. http://dx.doi.org/10.1016/j.jhazmat.2007.01.034CrossrefGoogle Scholar

  • [13] Claus H. 2014. Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments, pp. 15–38. In: Singh S.N. (ed.) Biological Remediation of Explosive Residues. Springer International, Switzerland. http://dx.doi.org/10.1007/978-3-319-01083-0_2CrossrefGoogle Scholar

  • [14] Dickel O. & Knackmuss H.J. 1991. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol. 157: 76–79. http://dx.doi.org/10.1007/BF00245339CrossrefGoogle Scholar

  • [15] Duque E., Haidour A., Godoy F. & Ramos J.L. 1993. Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J. Bacteriol. 175: 2278–2283. Google Scholar

  • [16] Fernando T., Bumpus J.A. & Aust S.D. 1990. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 1666–1671. Google Scholar

  • [17] Funk S.B., Roberts D.J., Crawford D.L. & Crawford R.L. 1993. Initial-phase optimization for bioremediation of munitions compounds-contaminated soils. Appl. Environ. Microbiol. 59: 2171–2177. Google Scholar

  • [18] Gorontzy T., Kuver J. & Blotevogel K.H. 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139: 1331–1336. http://dx.doi.org/10.1099/00221287-139-6-1331CrossrefGoogle Scholar

  • [19] Hallas L. & Alexander M. 1983. Microbial transformation of nitroaromatic compounds in sewage effluents. Appl. Environ. Microbiol. 57: 3156–3162. Google Scholar

  • [20] Harwood C.S. & Gibson J. 1986. Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J. Bacteriol. 165: 504–509. Google Scholar

  • [21] Kalderis D., Juhasz A.L., Boopathy R. & Comfort S. 2011. Soils contaminated with explosives environmental fate and evaluation of state of the art remediation processes. Pure Appl. Chem. 83: 1407–1484. http://dx.doi.org/10.1351/PAC-REP-10-01-05CrossrefGoogle Scholar

  • [22] Mans R.J. & Novelli G.D. 1961. Measurement of the incorporation of radioactive amino acids into protein by a filter paper disc method. Arch. Biochem. Biophys. 94: 48–53. http://dx.doi.org/10.1016/0003-9861(61)90009-1CrossrefGoogle Scholar

  • [23] Markis K.C., Sarkarb D. & Datta R. 2010. Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene contaminated sites. J. Environ. Monit. 12: 399–403. http://dx.doi.org/10.1039/b908162cCrossrefWeb of ScienceGoogle Scholar

  • [24] McCormick N.G., Cornell J.H. & Kaplan A.M. 1981. Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl. Environ. Microbiol. 42: 817–823. Google Scholar

  • [25] McCormick N., Feeherry F.E. & Levinson H.S. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31: 949–958. Google Scholar

  • [26] Michels J. & Gottschalk G. 1994. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylaminodinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 60:187–194. Google Scholar

  • [27] Montgomery M.T., Coffin R.B., Boyd T.J., Smith J.P., Walker S.E. & Osburn C.L. 2011. 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments. Environ. Poll. 159: 3673–3680. http://dx.doi.org/10.1016/j.envpol.2011.07.018CrossrefGoogle Scholar

  • [28] Mutter O., Potapova K., Limare B., Sproge K., Jakobsone I. & Bartkevics C.V. 2012. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J. Environ. Manag. 98: 51–55. http://dx.doi.org/10.1016/j.jenvman.2011.12.010CrossrefGoogle Scholar

  • [29] Nishino S.F. & Spain J.C. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59: 2520–2525. Google Scholar

  • [30] Preuss A., Fimpel J. & Diekert G. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159: 345–353. http://dx.doi.org/10.1007/BF00290917CrossrefGoogle Scholar

  • [31] Rylott E.L., Lorenz A. & Bruce N.C. 2011. Biodegradation and transformation of explosives. Curr. Opin. Biotechnol. 22: 434–440. http://dx.doi.org/10.1016/j.copbio.2010.10.014CrossrefGoogle Scholar

  • [32] Solyanikova I.P., Baskunov B.P., Baboshin M.A., Saralov A.I. & Golovleva L.A. 2012. Detoxification of high concentrations of trinitrotoluene by bacteria. Appl. Biochem. Microbiol. 48: 21–27. http://dx.doi.org/10.1134/S0003683812010152CrossrefWeb of ScienceGoogle Scholar

  • [33] Spanggord R.J., Spain J.C., Nishino S.F. & Mortelmans K.E. 1991. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 57: 3200–3205. Google Scholar

  • [34] Spiker J.K., Crawford D.L. & Crawford R.L. 1992. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3199–3202. Google Scholar

  • [35] Valli K., Brock B.J., Joshi D.K. & Gold M.H. 1992. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 221–228. Google Scholar

  • [36] Williams R.T., Ziegenfuss P.S. & Sick W.E. 1992. Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J. Ind. Microbiol. 9: 137–144. http://dx.doi.org/10.1007/BF01569746CrossrefGoogle Scholar

  • [37] Ziganshin A.M., Gerlach R., Borch T., Naumova A.V. & Naumova R.P. 2007a. Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl. Environ. Microbiol. 73: 7898–7905. http://dx.doi.org/10.1128/AEM.01296-07CrossrefGoogle Scholar

  • [38] Ziganshin A.M., Gerlach R., Naumenko E.A. & Naumova R.P. 2010. Aerobic degradatioin of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4. Microbiology (Moscow) 79: 178–183. http://dx.doi.org/10.1134/S0026261710020086Google Scholar

  • [39] Ziganshin A.M., Naumova A.V., Suvorova E.S., Naumenko E.A. & Naumova R.P. 2007b. Hydride-mediated reduction of 2,4,6-trinitrotoluene by yeasts as the way to its deep degradation. Microbiology (Moscow) 76: 676–682. http://dx.doi.org/10.1134/S0026261707060057CrossrefGoogle Scholar

About the article

Published Online: 2014-11-07

Published in Print: 2014-10-01


Citation Information: Biologia, Volume 69, Issue 10, Pages 1264–1270, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-014-0441-1.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xin Li, Shi-ming Lan, Zhong-ping Zhu, Chang Zhang, Guang-ming Zeng, Yun-guo Liu, Wei-cheng Cao, Biao Song, Hong Yang, Sheng-fan Wang, and Shao-hua Wu
Ecotoxicology and Environmental Safety, 2018, Volume 158, Page 162
[2]
[3]
Thivanka Ariyarathna, Penny Vlahos, Richard W. Smith, Stephen Fallis, Thomas Groshens, and Craig Tobias
Environmental Toxicology and Chemistry, 2017, Volume 36, Number 5, Page 1170
[4]
Wenjie Xu, Quanlin Zhao, Zhenming Jiang, Zhenzhong Zhang, and Zhengfang Ye
Soil and Sediment Contamination: An International Journal, 2016, Volume 25, Number 8, Page 905
[5]
Debasree Kundu, Chinmay Hazra, and Ambalal Chaudhari
Environmental Engineering Science, 2016, Volume 33, Number 9, Page 705

Comments (0)

Please log in or register to comment.
Log in