Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 10

Issues

Computational identification, homology modelling and docking analysis of phytase protein from Fusarium oxysporum

Iti Gontia-Mishra / Vinay Kumar Singh / Niraj Tripathi / Shaly Sasidharan / Sharad Tiwari
Published Online: 2014-11-07 | DOI: https://doi.org/10.2478/s11756-014-0447-8

Abstract

The extracellular phytase structural gene was isolated from phytopathogenic fungus Fusarium oxysporum using PCR amplification (GenBank accession number KC708486). The gene possesses an open reading frame of 1,514 bp and two coding regions 1–44 and 156–1458 with one intron (45–155). The phy gene from F. oxysporum (Fophy) encodes a putative phytase protein of F. oxysporum (FoPhy) of 448 amino acids, which includes a putative signal peptide (21 residues). The deduced amino acid sequence of FoPhy exhibits 98% sequence identity with Aspergillus niger and Aspergillus awamori phytases. The deduced protein sequence contains the consensus motifs (RHGXRXP and HD), eight conserved cysteine residues and ten conserved putative N-glycosylation sites, which are conserved among histidine acid phosphatases. Computed structural model of FoPhy was found to consist of mixed α/β motifs and probable loops. The predicted model resembles the structure of Aspergillus niger phytase (root mean square deviation 0.23 Å). Ramachandran plot analysis revealed that 95.0% portion of residues fall into the most favourable regions. The predicted three-dimensional structures of FoPhy on molecular docking with substrates like inositol hexaphosphate, inositol hexasulphate and N-acetyl D-glucosamine showed its interaction with conserved histidine and aspartic acid residues in the active site, as also known for other fungal phytases. This study provides a detailed identification and characterization of the phytase from F. oxysporum, which may be helpful in elucidation of its role in pathogenesis and other transcriptional and expression studies.

Keywords: phytase; Fusarium oxysporum; homology modelling; molecular docking

  • [1] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2CrossrefGoogle Scholar

  • [2] Arnold K., Bordoli L., Kopp J. & Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22: 195–201. http://dx.doi.org/10.1093/bioinformatics/bti770CrossrefGoogle Scholar

  • [3] Bae H.D., Yanke L.J., Cheng K.J. & Selinger L.B. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39: 17–22. http://dx.doi.org/10.1016/S0167-7012(99)00096-2CrossrefGoogle Scholar

  • [4] Betancur M.O., Cervantes L.F.P., Montoya M.M., Yepes M.S. & Sánchez P.A.G. 2012. Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Rev. Fac. Nal. Agr. Medellín 65: 6291–6303. Google Scholar

  • [5] Chatterjee S., Sankaranarayanan R. & Sonti R.V. 2003. PhyA, a secreted protein of Xanthomonas oryzae pv. oryzae, is required for optimum virulence and growth on phytic acid as a sole phosphate source. Mol. Plant-Microbe Int. 16: 973–982. http://dx.doi.org/10.1094/MPMI.2003.16.11.973CrossrefGoogle Scholar

  • [6] Colovos C. & Yeates T.O. 1993. Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci. 2: 1511–1519. http://dx.doi.org/10.1002/pro.5560020916CrossrefGoogle Scholar

  • [7] Engelen A.J., van der Heeft F.C., Randsdorp P.H. & Smit E.L. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77: 760–764. Google Scholar

  • [8] Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D. & Bairoch A. 2005. A protein identification and analysis tools on the ExPASy server, pp. 571–607. In: Walker J.M. (ed.), The Proteomics Protocols Handbook, Humana Press, New York. http://dx.doi.org/10.1385/1-59259-890-0:571CrossrefGoogle Scholar

  • [9] Gerlach W. & Nirenberg H. 1982. The Genus Fusarium — A Pictorial Atlas. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Fortwirtschaft, Vol. 209, Berlin-Dahlem, 406 pp. Google Scholar

  • [10] Gontia I., Tantwai K., Rajput L.P.S. & Tiwari S. 2012. Transgenic plants expressing phytase gene of microbial origin and their prospective application as feed. Food Technol. Biotechnol. 50: 3–10. Google Scholar

  • [11] Gontia-Mishra I., Deshmukh D., Tripathi N., Tantwai K., Bardiya-Bhurat K. & Tiwari S. 2013. Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Braz. J. Microbiol. 44: 317–323. http://dx.doi.org/10.1590/S1517-83822013005000021CrossrefGoogle Scholar

  • [12] Gontia-Mishra I. & Tiwari S. 2013. Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol. Biotechnol. 51: 313–326. Google Scholar

  • [13] Guex N. & Peitsch M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. http://dx.doi.org/10.1002/elps.1150181505CrossrefGoogle Scholar

  • [14] Kistler H.C., Alabouvette C., Baayen R.P., Bentley S., Brayford D., Coddington A., Correll J., Daboussi M.J., Elias K., Fernandez D., Gordon T.R., Katan T., Kim H.G., Leslie J.F., Martyn R.D., Migheli Q., Moore N.Y., O’Donnell K., Ploetz R.C., Rutherford M.A., Summerell B., Waalwijk C. & Woo S. 1998. Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxsysporum. Phytopathology 88: 30–32. http://dx.doi.org/10.1094/PHYTO.1998.88.1.30CrossrefGoogle Scholar

  • [15] Knogge W. 1996. Fungal infections of plants. Plant Cell 8: 1711–1722. http://dx.doi.org/10.1105/tpc.8.10.1711CrossrefGoogle Scholar

  • [16] Laskowski R.A., Rullmannn J.A., MacArthur M.W., Kaptein R. & Thornton J.M. 1996. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8: 477–486. http://dx.doi.org/10.1007/BF00228148CrossrefGoogle Scholar

  • [17] Lessel U. & Schomburg D. 1994. Similarities between protein 3-D structures. Protein Eng. 7: 1175–1187. http://dx.doi.org/10.1093/protein/7.10.1175CrossrefGoogle Scholar

  • [18] Li Y. & Ma F. 2012. Antagonistic mechanism of Fusarium oxysporum of soybean root rot by Bacillus subtilis. Appl. Mech. Materials 108: 127–131. http://dx.doi.org/10.4028/www.scientific.net/AMM.108.127CrossrefGoogle Scholar

  • [19] Lovell S.C., Davis I.W., Arendall III W.B., de Bakker P.I.W., Word J.M., Prisant M.G., Richardson J.S. & Richardson D.C. 2002. Structure validation by Cα geometry: phi, psi and Cβ deviation. Proteins Struct. Func. Genet. 50: 437–450. http://dx.doi.org/10.1002/prot.10286CrossrefGoogle Scholar

  • [20] Luthy R., Bowie J.U. & Eisenberg D. 1992. Assessment of protein models with three dimensional profile. Nature 356: 83–85. http://dx.doi.org/10.1038/356083a0CrossrefGoogle Scholar

  • [21] Marlida Y., Delfita R., Gusmanizar N. & Ciptaan G. 2010. Identi-fication characterization and production of phytase from endophytic fungi. World Acad. Sci. Eng. Technol. 65: 1043–1046. Google Scholar

  • [22] Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K. & Olson A.J. 1998. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 19: 1639–1662. http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BCrossrefGoogle Scholar

  • [23] Na S., Huang H., Meng K., Luo H., Wang Y., Yang P. & Yao B. 2008. Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J. Microbiol. Biotechnol. 18: 1221–1226. Google Scholar

  • [24] Oakley A.J. 2010. The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. Biochem. Biophys. Res. Commun. 397: 745–749. http://dx.doi.org/10.1016/j.bbrc.2010.06.024Web of ScienceCrossrefGoogle Scholar

  • [25] Pasamontes L., Haiker M., Wyss M., Tessier M. & van Loon A.P. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696–1700. Google Scholar

  • [26] Pokala N. & Handel T.M. 2004. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation. Protein Sci. 13: 925–936. http://dx.doi.org/10.1110/ps.03486104CrossrefGoogle Scholar

  • [27] Ragon M., Hoh F., Aumelas A., Chiche L., Moulin G. & Boze H. 2009. Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 321–326. http://dx.doi.org/10.1107/S1744309109008653CrossrefGoogle Scholar

  • [28] Rao D.E.C.S., Rao K.V., Reddy T.P. & Reddy V.D. 2009. Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit. Rev. Biotechnol. 29: 182–198. http://dx.doi.org/10.1080/07388550902919571CrossrefGoogle Scholar

  • [29] Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Web of ScienceGoogle Scholar

  • [30] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. http://dx.doi.org/10.1093/molbev/msr121Web of ScienceCrossrefGoogle Scholar

  • [31] Ullah A.H.J. & Mullaney E.J. 1996. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 227: 311–317. http://dx.doi.org/10.1006/bbrc.1996.1506CrossrefGoogle Scholar

  • [32] Vats P. & Banerjee U.C. 2004. Production studies and catalytic properties of phytases (myoinositol hexakisphosphate phosphohydrolases): an overview. Enzyme Microb. Technol. 35: 3–14. http://dx.doi.org/10.1016/j.enzmictec.2004.03.010CrossrefGoogle Scholar

  • [33] Vorobjev Y.N. & Hermans J. 2001. Free energies of protein decoys provide insight into determinants of protein stability. Protein Sci. 10: 2498–2506. http://dx.doi.org/10.1110/ps.ps.15501CrossrefGoogle Scholar

  • [34] Wang X.Y., Meang F.G. & Zhou H.M. 2004. The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochem. Cell Biol. 82: 329–334. http://dx.doi.org/10.1139/o03-082CrossrefGoogle Scholar

  • [35] Wiederstein M. & Sippl M.J. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(Web Server Issue): W407–W410. http://dx.doi.org/10.1093/nar/gkm290CrossrefWeb of ScienceGoogle Scholar

  • [36] Zhang W., Mullaney E.J. & Lei X.G. 2007. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl. Environ. Microbiol. 73: 3069–3076. http://dx.doi.org/10.1128/AEM.02970-06CrossrefGoogle Scholar

  • [37] Zuckerkandl E. & Pauling L. 1965. Evolutionary divergence and convergence in proteins, pp. 97–166. In: Bryson V. & Vogel H.J. (eds), Evolving Genes and Proteins. Academic Press, New York. http://dx.doi.org/10.1016/B978-1-4832-2734-4.50017-6CrossrefGoogle Scholar

About the article

Published Online: 2014-11-07

Published in Print: 2014-10-01


Citation Information: Biologia, Volume 69, Issue 10, Pages 1283–1294, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.2478/s11756-014-0447-8.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sijia Zhou, Zhemin Liu, Wancui Xie, Yuan Yu, Chen Ning, Mingxue Yuan, and Haijin Mou
International Journal of Biological Macromolecules, 2019, Volume 131, Page 1117
[2]
N. N. Gessler, E. G. Serdyuk, E. P. Isakova, and Y. I. Deryabina
Applied Biochemistry and Microbiology, 2018, Volume 54, Number 4, Page 352
[3]
Krishnendu Pramanik, Priyanka Pal, Tithi Soren, Soumik Mitra, Pallab Kumar Ghosh, Anumita Sarkar, and Tushar Kanti Maiti
Journal of Plant Biochemistry and Biotechnology, 2018
[4]
H. Pezeshgi Modarres, M. R. Mofrad, and A. Sanati-Nezhad
RSC Adv., 2016, Volume 6, Number 116, Page 115252

Comments (0)

Please log in or register to comment.
Log in