Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 2

Issues

An improved method to extract DNA from mango Mangifera indica

Mohammad Uddin
  • Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People’s Republic of China
  • Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wenli Sun
  • Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xinhua He / Jaime Teixeira da Silva / Qi Cheng
  • Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-20 | DOI: https://doi.org/10.2478/s11756-013-0311-2

Abstract

High quality genomic DNA is the first step in the development of DNA-based markers for fingerprinting and genetic diversity of crops, including mango (Mangifera indica L.), a woody perennial. Poor quality genomic DNA hinders the successful application of analytical DNA-based tools. Standard protocols for DNA extraction are not suitable for mango since the extracted genomic DNA often contains secondary metabolites that interfere with analytical applications. In this study, we employed an additional step to remove polysaccharides, polyphenols and secondary metabolites from genomic DNA extracted from young or mature leaf tissue; then a modified traditional cetyl trimethyl ammonium bromide (CTAB) method was applied. The use of 0.4 M glucose improved DNA quality and avoided contamination and browning by polyphenolics, relative to the traditional CTAB method. This is an easy and efficient method for genomic DNA extraction from both young and mature leaves of mango. The isolated DNA was free of polysaccharides, polyphenols, RNA and other major contaminants, as judged by its clear colour, its viscosity, A260/A280 ratio and suitability for PCR-based reactions. This modified protocol was also used to extract high quality genomic DNA from other woody perennials, including walnut, guava, lychee, pear, grape and sugarcane.

Keywords: genomic DNA extraction; Mangifera indica; polyphenols; inter simple sequence repeat; 18S rRNA

  • [1] Azmat M.A., Khan I.A., Cheema H.M.N., Rajwana I.A., Khan A.S. & Khan A.A. 2012. Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L. J. Zhejiang Univ. Sci. B (Biomed. Biotech.) 13: 239–243. http://dx.doi.org/10.1631/jzus.B1100194CrossrefGoogle Scholar

  • [2] Clark M.S. 1997. Plant Molecular Biology — A Laboratory Manual. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-87873-2CrossrefGoogle Scholar

  • [3] Couch J.A. & Fritz P.J. 1990. Isolation of DNA from plants high in polyphenolics. Plant Mol. Biol. Rep. 8: 8–12. http://dx.doi.org/10.1007/BF02668875CrossrefGoogle Scholar

  • [4] Dabo S.M., Mitchell E.D. & Melcher U. 1993. A method for the isolation of nuclear DNA from cotton (Gossypium) leaves. Anal. Biochem. 210: 34–38. http://dx.doi.org/10.1006/abio.1993.1146CrossrefGoogle Scholar

  • [5] Dawson C.R. & Magee R.J. 1955. Plant tyrosinase (polyphenol oxidase). Methods Enzymol. 2: 817–827. http://dx.doi.org/10.1016/S0076-6879(55)02309-4CrossrefGoogle Scholar

  • [6] Davenport T.L. & Nunez-Elisea R. 1997. Reproductive physiology, pp. 69–146. In: Litz R.E. (ed.), The Mango: Botany, Production and Uses, CAB International, Wallingford, UK. Google Scholar

  • [7] Davis T.M., Yu H., Haigis K.M. & McGowan P.J. 1995. Template mixing: a method of enhancing detection and interpretation of co dominant RAPD markers. Theor. Appl. Genet. 91: 582–588. Google Scholar

  • [8] Dellaporta S.L., Wood J. & Hicks J.B. 1983. A plant minipreparation; version 2. Plant Mol. Biol. Rep. 1: 19–21. http://dx.doi.org/10.1007/BF02712670CrossrefGoogle Scholar

  • [9] Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem. Bull. 19: 11–15. Google Scholar

  • [10] Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15. Google Scholar

  • [11] Fang G., Hammar S. & Grumet R. 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13: 52–54. PubMedGoogle Scholar

  • [12] Guillemaut P. & Marchal-Drouard L. 1992. Isolation of plant DNA: a fast, inexpensive, and reliable method. Plant Mol. Biol. Rep. 10: 60–65. http://dx.doi.org/10.1007/BF02669265CrossrefGoogle Scholar

  • [13] He X.H., Li Y.R., Guo Y.Z., Ou S.J. & Li R.B. 2007. Identification of closely related mango cultivars by ISSR. Guihaia 27: 44–47. Google Scholar

  • [14] Howland D.E., Oliver R.P. & Davy A.J. 1991. A method of extraction of DNA from Birch. Plant Mol. Biol. Rep. 9: 340–344. http://dx.doi.org/10.1007/BF02672010CrossrefGoogle Scholar

  • [15] John M.E. 1992. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res. 20: 2381. http://dx.doi.org/10.1093/nar/20.9.2381CrossrefGoogle Scholar

  • [16] Kashkush K., Fang J., Tomer J., Hillel J. & Lavi U. 2001. Cultivar identification and genetic map of mango Mangifera indica. Euphytica 122: 129–136. http://dx.doi.org/10.1023/A:1012646331258CrossrefGoogle Scholar

  • [17] Katterman F.R.H. & Shattuck V.I. 1983. An effective method of DNA isolation from the mature leaves of Gossypium species that contains large amount of phenolics, terpenoids and tannins. Prep. Biochem. 13: 347–359. Google Scholar

  • [18] Kotchoni S.O., Gachomo E.W., Betiku E. & Shonukan O.O. 2003. A home made kit for plasmid DNA mini preparation. Afr. J. Biotechnol. 2: 88–90. Google Scholar

  • [19] Lodhi M.A., Daly M.A., Weeden N.F. & Reisch B.I. 1995. A molecular marker based linkage map of Vitis. Genome 38: 786–794. http://dx.doi.org/10.1139/g95-100CrossrefGoogle Scholar

  • [20] Loomis M.D. 1974. Overcoming problems of phenolics and quinines in the isolation of plant enzymes and organelles. Methods Enzymol. 31: 528–544. http://dx.doi.org/10.1016/0076-6879(74)31057-9CrossrefGoogle Scholar

  • [21] Malabadi R.B., Teixeira da Silva J.A., Nataraja K., Vijaykumar S. & Mulgund G.S. 2011. Induction of somatic embryogenesis in mango (Mangifera indica L.). Int. J. Biol. Technol. 2: 12–18. Google Scholar

  • [22] Manoj K., Tushar B. & Sushama C. 2007. Isolation and purification of genomic DNA from black plum (Eugenia jambolana Lam.) for analytical applications. Int. J. Biotechnol. Biochem. 3: 49–55. Google Scholar

  • [23] Moller E.M., Bahnweg G., Sandermann H. & Geiger H.H. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucleic Acids Res. 20: 6115–6116. http://dx.doi.org/10.1093/nar/20.22.6115CrossrefGoogle Scholar

  • [24] Padmalatha K. & Prasad M.N.V. 2006. Optimization of DNA isolation and PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from peninsular India. Afr. J. Biotechnol. 5: 230–234. Google Scholar

  • [25] Paterson A.H., Brubacker C.L. & Wendel J.F. 1993. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol. Biol. Rep. 8: 122–127. http://dx.doi.org/10.1007/BF02670470CrossrefGoogle Scholar

  • [26] Permingeat H.R., Romagnoli M.V. & Vallejos R.H. 1998. A simple method for isolating high yield and quality DNA from cotton (Gossypium hirsutum L.). Plant Mol. Biol. Rep. 16: 1–6. http://dx.doi.org/10.1023/A:1017158311412CrossrefGoogle Scholar

  • [27] Pirttila A.M., Hirsikorpi M., Jaakola T.K.L. & Hohtola A. 2001. DNA isolation method for medicinal and aromatic plants. Plant Mol. Biol. Rep. 19: 273–278. http://dx.doi.org/10.1007/BF02772901CrossrefGoogle Scholar

  • [28] Porebski S., Balley L.G. & Baum B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharides and polyphenols component. Plant Mol. Biol. Rep. 15: 8–15. http://dx.doi.org/10.1007/BF02772108CrossrefGoogle Scholar

  • [29] Puchooa D. 2004. A simple rapid and efficient method for the extraction of genomic DNA from lychee Sonn. Afr. J. Biotechnol. 3: 253–255. Google Scholar

  • [30] Roy S.C. & Chattopadhyay A. 2011. Evaluation of genetic diversity in mango germplasm resources using RAPD markers and characterization of cultivar Guti based on 18S rRNA gene sequence. Indian J. Genet. Plant Breed. 71: 254–261. Google Scholar

  • [31] Sharma A.D., Gill P.K. & Singh P. 2002. DNA isolation from dry and fresh samples of polysaccharide-rich plants. Plant Mol. Biol. Rep. 20: 415. http://dx.doi.org/10.1007/BF02772129CrossrefGoogle Scholar

  • [32] Singh R.N. 1996. Mango. New Delhi, ICAR, 134 pp. Google Scholar

  • [33] Teixeira da Silva J.A. 2005. Effectiveness of DNA extraction protocols for horticultural and physiological model plant analyses. Int. J. Bot. 1: 93–99. http://dx.doi.org/10.3923/ijb.2005.93.99CrossrefGoogle Scholar

  • [34] Teixeira da Silva J.A. & Tanaka M. 2006. Analysis of suitability of DNA extraction protocols for somaclonal variation analysis in in vitro-cultured orchids. Acta Hort. 725: 203–209. Google Scholar

  • [35] Ukoskit K. 2007. Development of microsatellite markers in mango Mangifera indica L. Thummasat Int. J. Sci. Technol. 12: 1–7. Google Scholar

  • [36] Yamanaka N., Hasran M., Xu D.H., Tsunematsu H., Idris S. & Ban T. 2006. Genetic relationship and diversity of four Mangifera species revealed through AFLP analysis. Genet. Resources Crop Evol. 53: 949–954. http://dx.doi.org/10.1007/s10722-004-6695-7CrossrefGoogle Scholar

  • [37] Zhang J.F. & McDonald J.S. 2000. Economical and rapid method for extracting cotton genomic DNA. J. Cotton Sci. 4: 193–201. Google Scholar

  • [38] Zidani S., Ferchichi A. & Chaieb M. 2005. Genomic DNA extraction method from pearl millet (Pennisetum glaucum) leaves. Afr. J. Biotechnol. 4: 862–866. Google Scholar

About the article

Published Online: 2013-12-20

Published in Print: 2014-02-01


Citation Information: Biologia, Volume 69, Issue 2, Pages 133–138, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0311-2.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Haiyan He, Dan Zhang, Jianing Gao, Theis Raaschou Andersen, and Zishen Mou
PeerJ, 2019, Volume 7, Page e7636
[2]
S. -L. Tian, L. Li, S. N. M. Shah, and Z. -H. Gong
Biologia Plantarum, 2015, Volume 59, Number 3, Page 507

Comments (0)

Please log in or register to comment.
Log in