Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter January 28, 2014

Genetic diversity and relationships among Egyptian Galium (Rubiaceae) and related species using ISSR and RAPD markers

  • Kadry Abdel Khalik EMAIL logo , Magdy Abd El-Twab and Rasha Galal
From the journal Biologia

Abstract

Genetic diversity and phylogenetic analyses of 24 species, representing nine sections of the genus Galium (Rubiaceae), have been made using the Inter Simple Sequence Repeats (ISSR), Randomly Amplified Polymorphic DNA (RAPD), and combined ISSR and RAPD markers. Four ISSR primers and three RAPD primers generated 250 polymorphic amplified fragments. The results of this study showed that the level of genetic variation in Galium is relatively high. RAPD markers revealed a higher level of polymorphism (158 bands) than ISSR (92 bands). Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrograms were compared. Six clades can be recognized within Galium, which mostly corroborate, but also partly contradict, traditional groupings. UPGMA-based dendrogram showed a close relationship between members of section Leiogalium with G. verum and G. humifusum (sect. Galium), and G. angustifolium (sect. Lophogalium). Principal coordinated analysis, however, showed some minor differences with UPGMA-based dendrograms. The more apomorphic groups of Galium form the section Leiogalium clade including the perennial sections Galium, Lophogalium, Jubogalium, Hylaea and Leptogalium as well as the annual section Kolgyda. The remaining taxa of Galium are monophyletic.

[1] Abd El-Twab M.H. & Zahran F.A. 2008. Extracting total genomic DNA of Chrysanthemum sensu lato by CTAB and SDS without both liquid nitrogen and phenol. Chromos. Bot. 3: 83–88. http://dx.doi.org/10.3199/iscb.3.8310.3199/iscb.3.83Search in Google Scholar

[2] Abdel Khalik K., Abd El-Ghani M.M. & El Kordy A. 2007. A palynological study of Galium L. (Rubiaceae) in Egypt and its systematic implication. Feds. Rep. 118: 311–326. http://dx.doi.org/10.1002/fedr.20071113710.1002/fedr.200711137Search in Google Scholar

[3] Abdel Khalik K., Abd El-Ghani M.M. & El Kordy A. 2008a. Anatomical findings of the genus Galium L. (Rubiacaeae) in Egypt and their systematic implications. Turk. J. Bot. 32: 353–359. Search in Google Scholar

[4] Abdel Khalik K., Abd El-Ghani M.M. & El Kordy A. 2008b. Fruit and seed morphology in Galium L. (Rubiaceae) and importance for taxonomic identification. Act. Bot. Croat. 67: 1–20. Search in Google Scholar

[5] Abdel Khalik K., Abd El-Ghani M.M. & El Kordy A. 2008c. Numerical taxonomy of the genus Galium L. (Rubiaceae) in Egypt. Phyto. Balcn. 14: 245–253. Search in Google Scholar

[6] Abdel Khalik K. & Bakker F. 2007. Nasturtiopsis integrifolia (Boulos) Abdel Khalik and Bakker (Brassicaceae), a new combination, and Cruciata articulata (L.) Ehrend. (Rubiaceae), a new record for the Flora of Egypt. Turk. J. Bot. 31: 571–574. Search in Google Scholar

[7] Abdel Khalik, K., G. Osman and W. Al-Amoudi. 2012. Genetic diversity and taxonomic relationships of some Ipomoea species based on analysis of RAPD-PCR and SDS-PAGE of seed proteins. Aust. J. Crop. Sci. 6: 1088–1093. Search in Google Scholar

[8] Aghaabasi K. & Baghizadeh A. 2012. Investigation of genetic diversity in flixweed (Descurainia sophia) germplasm from Kerman province using inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) molecular markers. Afr. J. Biotechnol. 11: 10056–10062. 10.5897/AJB11.2517Search in Google Scholar

[9] Ančev M. & Krendl F. 2011. Galium sect. Leiogalium (Rubiaceae) in the Bulgarian flora. Phyto. Balcn. 17: 291–314. Search in Google Scholar

[10] Andersson L. & Rova J.H.E. 1999. The rps16 intron and the phylogeny of the Rubioideae (Rubiaceae). Pl. Syst. Evol. 214: 161–186. http://dx.doi.org/10.1007/BF0098573710.1007/BF00985737Search in Google Scholar

[11] Backlund M., Bremer B. & Thullin M. 2007. Paraphyly of Paederieae, recognition of Putorieae and expansion of Plocama (Rubiaceae-Rubioideae). Taxon 56: 315–328. Search in Google Scholar

[12] Boissier E. 1881. Flora Orientalis. Vol. 5. Geneva and Basel. Search in Google Scholar

[13] Boulos L. 1995. Flora of Egypt, Checklist. Al Hadara Publishing, Cairo, 287 pp. Search in Google Scholar

[14] Boulos L. 2000. Flora of Egypt. Vol. 2. Al Hadara Publishing, Cairo, 352 pp. Search in Google Scholar

[15] Bremer B. 1996. Phylogenetic studies within Rubiaceae and relationships to other families based on molecular data. Opera. Bot. Belg. 7: 33–50. Search in Google Scholar

[16] Bremer B. & Eriksson T. 2009. Time tree of Rubiaceae: Phylogeny and dating the family, subfamilies, and tribes. Int. J. Pl. Sci. 170: 766–793. http://dx.doi.org/10.1086/59907710.1086/599077Search in Google Scholar

[17] Bremer B. & Manen J.F. 2000. Phylogeny and classification of the subfamily Rubioideae (Rubiaceae). Pl. Syst. Evol. 225: 43–72. http://dx.doi.org/10.1007/BF0098545810.1007/BF00985458Search in Google Scholar

[18] Buldewo S., Pillay M. & Jaufeerally-Fakim Y. 2012. Genetic diversity in Anthurium andraeanum cultivars in Mauritius. Afr. J. Biotechnol. 11: 16737–16744. Search in Google Scholar

[19] Dempster L.T. 1993. Rubiaceae, pp. 976–986. In: Hickman J.C. (ed.), The Jepson manual, higher plants of California. University of California Press, Berkeley, California, USA. Search in Google Scholar

[20] Dogan B., Duran A. & Hakki E.E. 2007. Phylogenetic analysis of Jurinea (Asteraceae) species from Turkey based on ISSR amplification. Ann. Bot. Fenn. 44: 353–358. Search in Google Scholar

[21] Doyle J.J. 1991. DNA protocols for plants, pp. 283–293. In: Hewitt G., Johnson A.W.B. & Young J.P.W. (eds), Molecular Techniques in Taxonomy, NATO ASI Series H, Cell Biology Vol. 57. http://dx.doi.org/10.1007/978-3-642-83962-7_1810.1007/978-3-642-83962-7_18Search in Google Scholar

[22] Doyle J.J. & Doyle J.L. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13–15. 10.2307/2419362Search in Google Scholar

[23] Ehrendorfer F. 1956. Survey of the Galium multi?orum complex in western North America. Cont. Dud. Herb. 5: 1–21. Search in Google Scholar

[24] Ehrendorfer F. 1958. Critical notes on Turkish Rubiaceae. Notes. Roy. Bot. Gard. Edinb. 22: 323–401. Search in Google Scholar

[25] Ehrendorfer F., Krendl F. & Puff C. 1971. Evolution and ecogeographical differentiation in some South-West Asiatic Rubiaceae, pp. 195–215. In: Davis, P.H., Harper P.C. & Hedge I.C. (eds), Plant life of South-West Asia. Botanical Society of Edinburgh, Edinburgh, UK. Search in Google Scholar

[26] Ehrendorfer F., Krendl F. & Puff C. 1976. Galium L., pp. 14–36. In: Tutin T.G. et al. (eds), Flora Europaea. Vol. 4, Cambridge University Press, Cambridge. Search in Google Scholar

[27] Ehrendorfer F. & Schönbeck-Temesy E. 1982. Galium L., pp. 767–823. In: Davis P.H. (ed.), Flora of Turkey and the East Aegean Islands. Vol. 7. Edinburgh University Press, Edinburgh. Search in Google Scholar

[28] Ehrendorfer F., Schönbeck-Temesy E., Puff C. & Rechinger W. 2005. Rubiaceae. Part 176. In: Rechinger K.H. (ed.), Flora Iranica. Verlag des Naturhistorischen Museums Wien, Vienna. Search in Google Scholar

[29] Fracaro F., Zacaria J. & Echeverrigaray S. 2005. RAPD based genetic relationships between populations of three chemotypes of Cunila galioides Benth. Bioch. Syst. Ecol. 33: 409–417. http://dx.doi.org/10.1016/j.bse.2004.10.01710.1016/j.bse.2004.10.017Search in Google Scholar

[30] Galvan M.Z., Bornet B., Balatti P.A. & Branchard M. 2003. Inter simple sequence repeat (ISSR) marker as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L.). Euphytica 132: 297–301. http://dx.doi.org/10.1023/A:102503262241110.1023/A:1025032622411Search in Google Scholar

[31] Hanf M. 1983. The Arable Weeds of Europe. BASF UK Ltd, Ipswich, UK. Search in Google Scholar

[32] Huang S.C., Tsai C.C. & Sheu C.S. 2000. Genetic analysis of Chrysanthemum hybrids based on RAPD molecular markers. Bot. Bull. Acad. Sin. 41: 257–262. Search in Google Scholar

[33] Jaccard P. 1908. Nouvelles recherches sur la distribution florale. Bull. Soc.Vaud. Sci. Natur.44: 223–270. Search in Google Scholar

[34] Jansen S., Dessein S., Piesschaert F., Robbrecht E. & Smets E. 2000. Aluminum accumulation in leaves of Rubiaceae: Systematic and phylogenetic implications. Ann. Bot. 85: 91–101. http://dx.doi.org/10.1006/anbo.1999.100010.1006/anbo.1999.1000Search in Google Scholar

[35] Josiah C.C., George D.O., Eleazar O.M. & Nyamu W.F. 2008. Genetic diversity in Kenyan populations of Acacia senegal (L.) willd revealed by combined RAPD and ISSR markers. Afr. J. Biotechnol. 7: 2333–2340. Search in Google Scholar

[36] Kliphuis E. 1986. Cytotaxonomic investigations on some species of the genus Galium (Rubiaceae) from the Balkans. Nord. J. Bot.6: 15–20. http://dx.doi.org/10.1111/j.1756-1051.1986.tb00854.x10.1111/j.1756-1051.1986.tb00854.xSearch in Google Scholar

[37] Li Y.Y., Chen X.Y. & Zhang X. 2005. Genetic differences between wild and artificial populations of Metasequoia glyptostroboides: implications for species recovery. Cons. Biol. 19: 224–231. http://dx.doi.org/10.1111/j.1523-1739.2005.00025.x10.1111/j.1523-1739.2005.00025.xSearch in Google Scholar

[38] Linnaeus C. 1753. Species Plantarum. Laurentius Salvius, Holmiae. Search in Google Scholar

[39] Mabberley D.J. 1987. The plant-book. Cambridge University Press, Cambridge. Search in Google Scholar

[40] Manen J.F., Natali A. & Ehrendorfer F. 1994. Phylogeny of Rubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. Pl. Syst. Evol. 190: 195–211. http://dx.doi.org/10.1007/BF0098619310.1007/BF00986193Search in Google Scholar

[41] Manica-Cattani M.F., Zacaria J., Pauletti G., Atti-Serafini L. & Echeverrigaray S. 2009. Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Braz. J. Biol. 69: 375–380. http://dx.doi.org/10.1590/S1519-6984200900020002010.1590/S1519-69842009000200020Search in Google Scholar PubMed

[42] Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Can. Res. 27: 209–220. Search in Google Scholar

[43] Martín J.P. & Sánchez-Yélamo M.D. 2000. Genetic relationships among species of the genus Diplotaxis (Brassicaceae) using inter-simple sequence repeat markers. Theo. Appl. Genet. 101: 1234–1241. http://dx.doi.org/10.1007/s00122005160210.1007/s001220051602Search in Google Scholar

[44] Mattioni C., Casasoli M., Gonzalez M. & Ipinza R. 2002. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theo. Appl. Genet. 104: 1064–1070. http://dx.doi.org/10.1007/s00122-001-0824-x10.1007/s00122-001-0824-xSearch in Google Scholar PubMed

[45] Mitova M., Ančev M., Handjieva N. & Popov S. 2002. Iridoid patterns in Galium L. and some phylogenetic considerations. Z. Naturf. 57c: 226–234. 10.1515/znc-2002-3-405Search in Google Scholar PubMed

[46] Nan P., Peng S., Shi S., Ren H., Yang J. & Zhong Y. 2003. Inter population congruence in Chinese Primula ovalifolia revealed by chemical and molecular markers using essential oils and ISSRs. J. Biosci. 58: 57–61. 10.1515/znc-2003-1-210Search in Google Scholar PubMed

[47] Natali A., Manen J.F. & Ehrendorfer F. 1995. Phylogeny of the Rubiaceae-Rubioideae, in particular the tribe Rubieae: evidence from a non-coding chloroplast DNA sequence. Ann. Miss. Bot. Gard. 82: 428–439. http://dx.doi.org/10.2307/239989210.2307/2399892Search in Google Scholar

[48] Natali A., Manen J.F., Kiehn M. & Ehrendorfer F. 1996. Tribal generic and specific relationships in the Rubioideae-Rubieae (Rubiaceae) based on sequence data of a cpDNA intergene region. Opera. Bot. Belg. 7: 193–203. Search in Google Scholar

[49] Nie Z.L., Wen J., Sun H. & Bartholomew B. 2005. Monophyly of Kelloggia Torrey ex Benth. (Rubiaceae) and evolution of its intercontinental disjunction between western North America and eastern Asia. Am. J. Bot. 92: 642–652. http://dx.doi.org/10.3732/ajb.92.4.64210.3732/ajb.92.4.642Search in Google Scholar PubMed

[50] Parmaksız İ.& Özcan S. 2011. Morphological, chemical, and molecular analyses of Turkish Papaver accessions (sect. Oxytona). Turk. J. Bot. 35: 1–16. Search in Google Scholar

[51] Pezhmanmehr M., Hassani M.S., Jahansooz F., Najafi A.A., Sefidkon F., Mardi M. & Pirseiedi M. 2009. Assessment of genetic diversity in some Iranian populations of Bunium persicum using RAPD and AFLP markers. Afr. J. Biotechnol. 7: 93–100. Search in Google Scholar

[52] Pradeep A.R., Chatterjee S.N. & Nair C.V. 2005. Genetic differentiation induced by selection in an inbred population of the silkworm Bombyx mori, revealed by RAPD and ISSR marker systems. J. Appl. Gen. 46: 291–298. Search in Google Scholar

[53] Qian W., Ge S. & Hong D.Y. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theo. Appl. Gen. 102: 440–449. http://dx.doi.org/10.1007/s00122005166510.1007/s001220051665Search in Google Scholar

[54] Robbrecht E. 1988. Tropical woody Rubiaceae. Characteristic features and progressions. Contributions to a new subfamilial classification. Opera. Bot. Belg. 1: 1–271. Search in Google Scholar

[55] Robbrecht E. & Manen J.F. 2006. The major evolutionary lineages of the coffee family (Rubiaceae, angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and supertree construction based on rbcL, rps16, trnLtrnF and atpB-rbcL data. A new classification in two subfamilies Cinchonoideae and Rubioideae. Syst. Geog. Pl. 76: 85–146. Search in Google Scholar

[56] Rohlf F.J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Ver. 2.1. Setauket, New York, USA: Exeter Publishing Ltd. Search in Google Scholar

[57] Rydin C., Kainulainen K., Razafimandimbison S.G., Smedmark J.E.E. & Bremer B. 2009. Deep divergences in the coffee family and the systematic position of Acranthera. Pl. Syst. Evol. 278: 101–123. http://dx.doi.org/10.1007/s00606-008-0138-410.1007/s00606-008-0138-4Search in Google Scholar

[58] Schischkin B.K. 2000. Flora of the USSR, vol. 23. Delhra Dunn, India: Bishen Singh Mahendra Pal Singh; Koenigstein: Koeltz Scientific Books. Search in Google Scholar

[59] Shen W., Xi P., Li M., Liu R Sun., L., Jiang Z. & Zhang L. 2012. Genetic diversity of Ustilago scitaminea Syd. in Southern China revealed by combined ISSR and RAPD analysis. Afr. J. Biotechnol. 11: 11693–11703. 10.5897/AJB12.293Search in Google Scholar

[60] Soza V.L. & Olmstead R.G. 2010a. Evolution breeding systems and fruits in New World Galium and relatives (Rubiaceae). Am. J. Bot. 97: 1630–1646. http://dx.doi.org/10.3732/ajb.100013010.3732/ajb.1000130Search in Google Scholar PubMed

[61] Soza V.L. & Olmstead R.G. 2010b. Molecular systematics of tribe Rubieae (Rubiaceae): Evolution of major clades, development of leaf-like whorls, and biogeography. Taxon 59: 755–771. Search in Google Scholar

[62] Täckholm V. 1974. Students’ Flora of Egypt. ed. 2. Publisher Cairo University, Beirut, 888 pp. Search in Google Scholar

[63] Willis J.C. 1985. A Dictionary of the Flowering Plants and Ferns. Cambridge University Press, Cambridge, 1294 pp. Search in Google Scholar

[64] Xavier J.R., Kumar J. & Srivastava R.B. 2011. Characterization of genetic structure of alfalfa (Medicago sp.) from trans-Himalaya using RAPD and ISSR markers. Afr. J. Biotechnol. 10: 8176–8187. 10.5897/AJB10.2083Search in Google Scholar

[65] Zhang L.J. & Dai S.L. 2010. Genetic variation within and among populations of Orychophragmus violaceus (Cruciferae) in China as detected by ISSR analysis. Genet. Res. Crop. Evol. 57: 55–64. http://dx.doi.org/10.1007/s10722-009-9450-210.1007/s10722-009-9450-2Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-3-1

© 2013 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-013-0314-z/html
Scroll to top button