Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 3

Issues

In vitro propagation of Caralluma tuberculata and evaluation of antioxidant potential

Riaz Rehman / Muhammad Chaudhary / Khalid Khawar / Gang Lu / Abdul Mannan / Muhammad Zia
Published Online: 2014-01-28 | DOI: https://doi.org/10.2478/s11756-013-0322-z

Abstract

Present study describes rapid in vitro propagation of Caralluma tuberculata, a traditional medicinal plant, and antioxidant potential of calli and plants extracts. The highest callus induction rate (93.3%) with maximum weight of calli 5.2 g was achieved from shoot tip explants on MS medium supplemented with 9.04 μM 2,4-D and 4.44 μM BA. The maximum shoot induction rate (71.1%) with mean number of shoots 3.66 ± 1.53 and 4.6 cm average shoot length was observed on 13.32 μM BA, 4.52 μM 2,4-D and 2.89 μM GA3 appended in MS medium. The developed shoots were best rooted in the presence of 5.07 μM IAA with 3.0 ± 0.15 roots per plantlet. The plants were successfully acclimatized under in vivo conditions. The plants and calli extracts exhibited good antioxidant activities, however, plant extract activities were more pronounced. The phenolic compounds in plant and calli extracts were 0.16% and 0.057%, respectively. While the flavonoids were 0.092% in plant and 0.039% in calli extract. Total Phenolics, flavonoids; DPPH radical scavenging activity and reducing power potential distributed among different fractions depending upon polarity of the solvent. The highest DPPH scavenging activity and reducing power was exhibited by water fractions; 4.95 mg/mL and 0.729 OD at 10 mg/mL, respectively. The micropropagation protocol can be successfully used for large-scale multiplication and conservation of germplasm of this threatened plant. Furthermore, antioxidant value describes importance of this valuable plant as food and medicine.

Keywords: antioxidant; callus, DPPH assay; free radical scavenging; micropropagation; phenolics

  • [1] Abdel-Sattar E., Ahmed A.A., Hegazy F.M.E., Farag M.A. & Al-Yahya M.A. 2007. Acylated pregnane glycosides from Caralluma russeliana. Phytochem. 68: 1459–1463. http://dx.doi.org/10.1016/j.phytochem.2007.03.009CrossrefGoogle Scholar

  • [2] Al-Yahya M.A., Abdel-Sattar E. & Guittet E. 2000. Pregnane glycosides from Caralluma russeliana. J. Nat. Prod. 63: 1451–1453. http://dx.doi.org/10.1021/np990530cCrossrefGoogle Scholar

  • [3] Anjum S., Zia M. & Chaudhary M.F. 2006. Investigations of different strategies for high frequency regeneration of Dendrobium malones ‘Victory’. African J. Biotechnol 5: 1738–1743. Google Scholar

  • [4] Ansari N.M., Houlihan L., Hussain B. & Pieroni A. 2005. Antioxidant activity of five vegetables traditionally consumed by South-Asian migrants in Bradford, Yorkshire, UK. Phytother. Res. 19: 907–911. http://dx.doi.org/10.1002/ptr.1756CrossrefGoogle Scholar

  • [5] Aruna V., Kiranmai C., Karuppusamy S. & Pullaiah T. 2009. Micropropagation of three varieties of Caralluma adscendens via nodal explants. J. Plant Biochem. Biotech. 18: 121–123. http://dx.doi.org/10.1007/BF03263309CrossrefGoogle Scholar

  • [6] Bader A., Braca A., DeTommasi N. & Morelli I. 2003. Further constituents from Caralluma negevensis. Phytochem. 62: 1277–1281. http://dx.doi.org/10.1016/S0031-9422(02)00678-7CrossrefGoogle Scholar

  • [7] Bais H.P., George J. & Ravishankar G.A. 2000. In vitro propagation of Decalepis hamiltonii Wight & Arn., an endangered shrub, through axillary bud cultures. Curr. Sci. 79: 408–410. Google Scholar

  • [8] Bao J.S., Cai Y.Z., Sun M., Wang G.Y. & Corke H. 2005. Anthocyanins flavonols and free radical scavenging activity of Chinese bayberry Myrica rubra. extracts and their color properties and stability. J. Agric. Food Chem. 53: 2327–2332. http://dx.doi.org/10.1021/jf048312zCrossrefGoogle Scholar

  • [9] Bibi Y., Nisa S., Chaudhary F.M. & Zia M. 2011a. Antibacterial activity of some selected medicinal plants of Pakistan. BMC Comp. Alt. Med. 11: 52. http://dx.doi.org/10.1186/1472-6882-11-52CrossrefGoogle Scholar

  • [10] Bibi Y., Zia M., Nisa S., Habib D., Waheed A. & Chaudhary F.M. 2011b. Regeneration of Centella asiatica plants from non-embryogenic cell lines and evaluation of antibacterial and antifungal properties of regenerated calli and plants. J. Biol. Engin. 5: 13. http://dx.doi.org/10.1186/1754-1611-5-13CrossrefGoogle Scholar

  • [11] Bravo L. 1998. Polyphenols: chemistry, dietary sources, metabolism and nutritional significance. Nutrition Rev. 56: 317–333. http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.xCrossrefGoogle Scholar

  • [12] Chattopadhyay S., Datta S.K. & Ray M. 1992. In vitro effect of NH4 NO3 on growth and alkaloid content of Tylophora indica Merr. Phytomorphol. 42: 134–144 Google Scholar

  • [13] Chengalaryan K., Mhaske V.B. & Hazra S. 1997. High frequency conversion of abnormal peanut somatic embryos. Plant Cell Rep. 16: 783–786. http://dx.doi.org/10.1007/s002990050320CrossrefGoogle Scholar

  • [14] Dunbar K., Wilson K., Petersen B. & Biesboer D. 1986. Identification of laticifers in embryoids derived from callus and suspension of cultures of Asclepias species Asclepiadaceae. Am. J. Bot. 73: 847–851. http://dx.doi.org/10.2307/2444295CrossrefGoogle Scholar

  • [15] Gaj M.D. 2004. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana L., Heynh. Plant Growth Reg. 43: 27–47. http://dx.doi.org/10.1023/B:GROW.0000038275.29262.fbCrossrefGoogle Scholar

  • [16] Gazzarrini S. & McCourt P. 2003. Cross-talk in plant hormone signaling: what Arabidopsis mutants are telling us. Ann. Bot. 91: 605–612. http://dx.doi.org/10.1093/aob/mcg064CrossrefGoogle Scholar

  • [17] Grzegorczyk I., Matkowski A. & Wysokińska H. 2007. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem. 104: 536–541 http://dx.doi.org/10.1016/j.foodchem.2006.12.003CrossrefGoogle Scholar

  • [18] Habib D., Chaudhary M.F. & Zia M. 2013. The study of ascorbate peroxidase, catalase and peroxidase during in vitro regeneration of Argyrolobium roseum. Appl. Biochem. Biotechnol. DOI: 10.1007/s12010-013-0591-6 CrossrefGoogle Scholar

  • [19] Hu K., Yao X.S., Dong A.J., Kobayashi H., Iwasaki S. & Jing Y.K. 1999. New pregnane glycosides from Dioscorea collettii. J. Natural Prod. 62: 299–301. http://dx.doi.org/10.1021/np980101zCrossrefGoogle Scholar

  • [20] Jiménez V.M. 2001. Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev. Bras. Fisiol. Veg. 13: 196–223. http://dx.doi.org/10.1590/S0103-31312001000200008CrossrefGoogle Scholar

  • [21] Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S. & Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agri. Food Chem. 47: 3954–3962. http://dx.doi.org/10.1021/jf990146lCrossrefGoogle Scholar

  • [22] Kuda T., Tsunekawa M., Goto H. & Araki Y. 2005. Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J. Food Comp. Anal. 18: 625–633. http://dx.doi.org/10.1016/j.jfca.2004.06.015CrossrefGoogle Scholar

  • [23] Lin L.J., Lin L.Z., Gil R.R., Cordell G.A., Ramesh M., Srilatha B., Reddy B. & Rao A.V.N.A. 1994. Pregnane glycosides from Caralluma umbellata. Phytochem. 35: 1549–1553. http://dx.doi.org/10.1016/S0031-9422(00)86892-2CrossrefGoogle Scholar

  • [24] Liu X., Zhao M., Wang J., Yang B. & Jiang Y. 2008. Antioxidant activity of methanolic extract of emblica fruit Phyllanthus emblica L.. from six regions in China. J. Food Comp. Anal. 21: 219–228. http://dx.doi.org/10.1016/j.jfca.2007.10.001CrossrefGoogle Scholar

  • [25] Ma G., da Silva J.A.T. & Wu G. 2011. Direct adventitious shoot formation from apical shoot explants of Euphorbia tirucalli. J. Plant Growth Reg. 30: 114–116. http://dx.doi.org/10.1007/s00344-010-9170-zCrossrefGoogle Scholar

  • [26] Mahender S.R. & Shekhawat N.S. 2013. In vitro regeneration in Sarcostemma acidum Roxb. — an important medicinal plant of semi-arid ecosystem of Rajasthan, India. Physiol. Mol. Biol. Plants 19: 269–275. http://dx.doi.org/10.1007/s12298-012-0158-yCrossrefGoogle Scholar

  • [27] Martin K.P. 2002. Rapid propagation of Holostemma ada-kodien Schult., a rare medicinal plant, through axillary bud multiplication and indirect organogenesis. Plant Cell Rep. 21: 112–117. http://dx.doi.org/10.1007/s00299-002-0483-7CrossrefGoogle Scholar

  • [28] Matsingou T.C., Petrakis N., Kapsokefalou M. & Salifoglou A. 2003. Antioxidant activity of organic extracts from aqueous infusion of sage. J. Agri. Food Chem. 51: 6696–6701. http://dx.doi.org/10.1021/jf034516oCrossrefGoogle Scholar

  • [29] Moreno M.I.N., Isla M.I., Sampietro A.R. & Vattuone M.A. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharm. 71: 109–114. http://dx.doi.org/10.1016/S0378-8741(99)00189-0CrossrefGoogle Scholar

  • [30] Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 15: 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.xCrossrefGoogle Scholar

  • [31] Naima B. & Taoufik K. 2006. Micropropagation of Teucrium stocksianum and Caralluma arabica — two endangered medicinal plants. Revue des Régions Arides — Numéro spécial — Actes du séminaire international les Plantes à Parfum, Aromatiques et Médicinales SIPAM. Google Scholar

  • [32] Negi P.S., Jayaprakasha G.K. & Jena B.S. 2003. Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chem. 80: 393–397. http://dx.doi.org/10.1016/S0308-8146(02)00279-0CrossrefGoogle Scholar

  • [33] Nessler C.L. 1982. Somatic embryogenesis in the opium poppy, Papaver somniferum. Physiol. Plant. 55: 453–458. http://dx.doi.org/10.1111/j.1399-3054.1982.tb04526.xCrossrefGoogle Scholar

  • [34] Phulwaria M., Shekhawat N.S., Rathore J.S. & Singh P.R. 2013. An efficient in vitro regeneration and ex vitro rooting of Ceropegia bulbosa Roxb. — A threatened and pharmaceutical important plant of Indian Thar Desert. Indust. Crops Prod. 42: 25–29. http://dx.doi.org/10.1016/j.indcrop.2012.05.013CrossrefGoogle Scholar

  • [35] Piacente S., Belisario M.A., Del-Castillo H., Pizza C. & De Feo V. 1998. Croton ruizianus: platelet proaggregating activity of two new pregnane glycosides. J. Nat. Prod. 61: 318–322. http://dx.doi.org/10.1021/np970399dCrossrefGoogle Scholar

  • [36] Pramanik T.K. & Datta S.K. 1986. Plant regeneration and ploidy variation in culture derived plants of Asclepias curassavica L. Plant Cell Rep. 5: 219–222. http://dx.doi.org/10.1007/BF00269124CrossrefGoogle Scholar

  • [37] Qiu S.X., Cordell G.A., Kumar B.R., Rao Y.N., Ramesh M. & Kokate C. 1999. Studies on the C-21 steroids from asclepiadaceous plants bisdesmosidic pregnane glycosides from Caralluma lasiantha. Phytochem. 50: 485–491. http://dx.doi.org/10.1016/S0031-9422(98)00569-XCrossrefGoogle Scholar

  • [38] Qiu S.X., Lin L.Z., Cordell G.A., Ramesh M., Kumar B.R., Radhakrishna M., Mohan G.K., Reddy B.M., Rao Y.N., Srinivas B., Thomas N.S. & Rao A.V.N.A. 1997. Acylated C-21 steroidal bisdesmosidic glycosides from Caraluma umbellate. Phytochem. 46: 333–340. http://dx.doi.org/10.1016/S0031-9422(97)00237-9CrossrefGoogle Scholar

  • [39] Radhakrishnan R., Zakaria M., Islam M.W., Liu X.M., Chan K., Habibullah M., Raghu R.D., SriRama M.K. & Pullaiah T. 2002. In vitro propagation of Cynanchum callialatum. J. Trop. Med. Plants 3: 233–238. Google Scholar

  • [40] Rajendran R. & Ramaswamy K. 2004. Caralluma Extract Products and Processes for Making the Same. United States Patent and Trademark Office USPTO, U.S. Patent Documents 6376657. Google Scholar

  • [41] Rashid H.S., Khan S.A., Zia M., Chaudhary M.F. & Hanif Z.C. 2009. Callus induction and rgeneration in elite sugarcane cultivar HSF-240. Pak. J. Bot. 41: 1645–1649. Google Scholar

  • [42] Riaz U.R., Zia M. & Chaudhary M.F. 2007. Tissue culture studies of Caralluma tuberculata: an endangered plant. Plant Biology Meeting Abstract, 35048. Google Scholar

  • [43] Roy A.T., Koutoulis A. & De D.N. 2000. Cell suspension culture and plant regeneration in the latex-producing plant, Calotropis gigantea Linn., R. Br. Plant Cell Tiss. Org. Cult. 63: 15–22. http://dx.doi.org/10.1023/A:1006497220647CrossrefGoogle Scholar

  • [44] Shimada K., Fujikawa K., Yahara K. & Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945–948. http://dx.doi.org/10.1021/jf00018a005CrossrefGoogle Scholar

  • [45] Smetanska I. 2008. Production of secondary metabolites using plant cell cultures. Advances in Biochemical Engineering/ Biotechnology, vol. 111. Springer-Verlag, Berlin, pp. 187–228. Google Scholar

  • [46] Sreelatha V.R., Rani S.S., Reddy P.V.K., Naveen M., Ugraiah A. & Pullaiah T. 2009. In vitro propagation of Caralluma sarkariae Lavranos & Frandsen — An endemic and endangered medicinal plant. Indian J. Biotechnol. 8: 236–239. Google Scholar

  • [47] Sudha C.G., Krishnan P.N. & Pushpangadan P. 1998. In vitro propagation of Holostemma annulare Roxb., K. Schum, a rare medicinal plant. In vitro Cell Dev. Biol. Plant 33: 57–63. http://dx.doi.org/10.1007/BF02823124CrossrefGoogle Scholar

  • [48] Templeton J.F., Ling Y., Zeglam T.H. & LaBella F.S. 1993. Synthesis of 20-hydroxy-, 20-amino-, and 20 nitro-14-hydroxy-21-nor-5b, 14bpregnane C-3 glycosides and related derivatives: structure-activity relationships of pregnanes that bind to the Digitalis receptor. J. Med. Chem. 36: 42–45. http://dx.doi.org/10.1021/jm00053a006Google Scholar

  • [49] Ugraiah A., Karuppusamy S. & Pullaiah T. 2011. Micropropagation of Marsdenia brunoniana Wight & Arn. -A rare antidiabetic plant. Plant Tiss. Cult. Biotechnol. 21: 89–93. Google Scholar

  • [50] Velioglu Y.S., Mazza G., Gao L. & Oomah B.D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agri. Food Chem. 46: 4113–4117. http://dx.doi.org/10.1021/jf9801973CrossrefGoogle Scholar

  • [51] Vikrant A.R. 2002. Induction of multiple shoots by thidiazuron from caryopsis cultures of minor millet Paspalum scrobiculatum L., and its effect on the regeneration of embryogenic callus cultures. Plant Cell Rep. 21: 9–13. http://dx.doi.org/10.1007/s00299-002-0466-8CrossrefGoogle Scholar

  • [52] Wang J. & Bao M.Z. 2007. Plant regeneration of pansy Viola wittrockiana, ‘Caidie’ via petiole-derived callus. Scientia Horticult. 111: 266–270. http://dx.doi.org/10.1016/j.scienta.2006.10.011CrossrefGoogle Scholar

  • [53] Wilson H.M., Eisa M.Z. & Irwin S.W.B. 1976. The effects of agitated liquid medium on in vitro cultures of Hevea brasiliensis. Physiol. Plant. 36: 399–402. http://dx.doi.org/10.1111/j.1399-3054.1976.tb02264.xCrossrefGoogle Scholar

  • [54] Yen G.C. & Chen H.Y. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agri. Food Chem. 43: 27–32. http://dx.doi.org/10.1021/jf00049a007CrossrefGoogle Scholar

  • [55] Zakaria M.N.M., Islam M.W. & Radhakrishnan R. 2002. Antigastric ulcer and cytoprotective properties of Caralluma arabica. Pharm. Biol. 40: 225–230. http://dx.doi.org/10.1076/phbi.40.3.225.5830CrossrefGoogle Scholar

  • [56] Zhang X., daSilva J.A.T., Duan J., Deng R.F., Xu X.L. & Ma G.H. 2012. Endogenous hormone levels and anatomical characters of haustoria in Santalum album L. seedlings before and after attachment to the host. J. Plant Physiol. 169: 859–866. CrossrefGoogle Scholar

  • [57] Zia M., Mannan A. & Chaudhary M.F. 2007. Effect of amino acids and plant growth regulators on artenisinin production in the callus of Artemisia absinthium. Pak. J. Bot. 39: 799–805. Google Scholar

  • [58] Zia M., Rizvi Z.F., Rehman R.U. & Chaudhary M.F. 2010. Micropropagation of two Pakistani soybean Glycine max L. cultivars from mature seeds cotyledon nodes. Spanish J. Agri. Res. 8: 448–453. http://dx.doi.org/10.5424/sjar/2010082-1193CrossrefGoogle Scholar

About the article

Published Online: 2014-01-28

Published in Print: 2014-03-01


Citation Information: Biologia, Volume 69, Issue 3, Pages 341–349, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0322-z.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jafar Poodineh and Alireza Nakhaee
Jundishapur Journal of Natural Pharmaceutical Products, 2019, Volume In Press, Number In Press
[2]
Aseesh Pandey, Tarun Belwal, Sushma Tamta, I. D. Bhatt, and R. S. Rawal
Molecular Biology Reports, 2019, Volume 46, Number 2, Page 2231
[3]
Kandhan Karthishwaran, Salem Obaid Saeed Obaid Al Shamisi, Shyam Sreedhara Kurup, Sabitha Sakkir, and Abdul Jaleel Cheruth
Biotechnology & Biotechnological Equipment, 2017, Page 1
[4]
Shahab Khan, Tofeeq Ur-Rehman, Bushra Mirza, Ihsan Ul-Haq, and Muhammad Zia
Pharmaceutical Chemistry Journal, 2017
[6]
Hira Zafar, Attarad Ali, and Muhammad Zia
Applied Biochemistry and Biotechnology, 2017, Volume 181, Number 1, Page 365
[7]
Roshan Zamir, Shahid Akbar Khalil, Nisar Ahmad, Abdur Rab, Syed Tariq Shah, Nyla Jabeen, Shahid Ali, and Mohammad Ali
Acta Physiologiae Plantarum, 2016, Volume 38, Number 8
[8]
Hira Zafar, Attarad Ali, Joham S. Ali, Ihsan U. Haq, and Muhammad Zia
Frontiers in Plant Science, 2016, Volume 7
[9]
Nitin Kundlikrao Gaikwad, Utkarsh Ravindra Moon, Pratapbhanu Singh Bhadoria, and Adinpunya Mitra
Plant Cell, Tissue and Organ Culture (PCTOC), 2015, Volume 122, Number 2, Page 509
[10]
T. A. Kalinina, Yu. S. Shakhmina, T. V. Glukhareva, Yu. Yu. Morzherin, Z.-J. Fan, R. A. Borzenkova, E. S. Skolobanova, and I. S. Kiseleva
Chemistry of Heterocyclic Compounds, 2014, Volume 50, Number 7, Page 1039

Comments (0)

Please log in or register to comment.
Log in