Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 69, Issue 3


PPK1 and PPK2 — which polyphosphate kinase is older?

Lucia Achbergerová
  • Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538, Bratislava, Slovakia
  • Centre of Excellence for White-green Biotechnology, Institute of Chemistry, Slovak Academy of Sciences, Trieda A. Hlinku 2, SK-94976, Nitra, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Nahálka
  • Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538, Bratislava, Slovakia
  • Centre of Excellence for White-green Biotechnology, Institute of Chemistry, Slovak Academy of Sciences, Trieda A. Hlinku 2, SK-94976, Nitra, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-28 | DOI: https://doi.org/10.2478/s11756-013-0324-x


Polyphosphate kinases (PPKs) catalyse the polymerisation and degradation of polyphosphate chains. As a result of this process, PPK produces or consumes energy in the form of ATP. Polyphosphate is a linear molecule that contains tens to hundreds of phosphate residues connected by macroergic bonds, and it appears to be an easily obtainable and rich source of energy from prebiotic times to the present. Notably, polyphosphate is present in the cells of all three domains of life, but PPKs are widely distributed only in Bacteria, as Archaea and Eucarya use various unrelated or “nonhomologous” proteins for energy and metabolic balance. The present study focuses on PPK1 and PPK2 homologues, which have been described to some extent in Bacteria, and the aim was to determine which homologue group, PPK1 or PPK2, is older. Phylogenetic analyses of 109 sequence homologues of Escherichia coli PPK1 and 109 sequence homologues of Pseudomonas aeruginosa PPK2 from 109 bacterial genomes imply that polyphosphate consumption (PPK2) evolved first and that phosphate polymerisation (PPK1) evolved later. Independently, a theory of the trends in amino acid loss and gain also confirms that PPK2 is older than PPK1. According to the results of this study, we propose 68 hypothetical proteins to mark as PPK2 homologues and 3 hypothetical proteins to mark as PPK1 homologues.

Keywords: evolution; polyphosphate; polyphosphate kinase; nucleoside phosphates

  • [1] Achbergerová L. & Nahálka J. 2011. Polyphosphate — an ancient energy source and active metabolic regulator. Microb. Cell Fact. 10: 63. http://dx.doi.org/10.1186/1475-2859-10-63CrossrefGoogle Scholar

  • [2] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410. Google Scholar

  • [3] Baltscheffsky H., Blomberg C., Liljenstrom H., Lindahl B.I. & Arhem P. 1997. On the origin and evolution of life: an introduction. J. Theor. Biol. 187: 453–459. http://dx.doi.org/10.1006/jtbi.1996.0380CrossrefGoogle Scholar

  • [4] Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. & Bourne P.E. 2000. Protein Data Bank. Nucleic Acids Research 28: 235–242. http://dx.doi.org/10.1093/nar/28.1.235CrossrefGoogle Scholar

  • [5] Brooks D.J. & Fresco J.R. 2002. Increased frequency of cysteine, tyrosine, and phenylalanine residues since the last universal ancestor. Mol. Cell Proteomics 1: 125–131. http://dx.doi.org/10.1074/mcp.M100001-MCP200CrossrefGoogle Scholar

  • [6] Brooks D.J., Fresco J.R., Lesk A.M. & Singh M. 2002. Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol. Biol. Evol. 19: 1645–1655. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003988CrossrefGoogle Scholar

  • [7] Budavari S. 1989. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 11th Ed., Merck & Co., Rahway, 1364 pp. Google Scholar

  • [8] Chan P.P., Holmes A.D., Smith A.M., Tran D. & Lowe T.M. 2012. The UCSC Archaeal Genome Browser: 2012 update. Nucleic Acids Res. 40: D646–D652. http://dx.doi.org/10.1093/nar/gkr990CrossrefGoogle Scholar

  • [9] Edgar R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461. http://dx.doi.org/10.1093/bioinformatics/btq461CrossrefGoogle Scholar

  • [10] Force A., Lynch M., Pickett F.B., Amores A., Yan Y. & Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545. Google Scholar

  • [11] Friedberg I. & Avigad G. 1968. Structures containing polyphosphate in Micrococcus lysodeikticus. J. Bacteriol. 96: 544–553. Google Scholar

  • [12] Gomez-Garcia M.R. & Kornberg A. 2004. Formation of an actinlike filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc. Natl. Acad. Sci. USA 101: 15876–15880. http://dx.doi.org/10.1073/pnas.0406923101CrossrefGoogle Scholar

  • [13] Gomez-Garcia M.R., Fazeli F., Grote A., Grossman A.R. & Bhaya D. 2013. The role of polyphosphate in thermophilic Synechococcus sp. frommicrobialmats. J. Bacteriol. 195: 3309–3319. http://dx.doi.org/10.1128/JB.00207-13CrossrefGoogle Scholar

  • [14] Gower L.B. 2008. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108: 4551–4627. http://dx.doi.org/10.1021/cr800443hCrossrefGoogle Scholar

  • [15] Hahn M.W. 2009. Distinguishing among evolutionary models for the maintenance of gene duplicates. J. Hered. 100: 605–617. http://dx.doi.org/10.1093/jhered/esp047CrossrefGoogle Scholar

  • [16] Hooley P., Whitehead M.P. & Brown M.R. 2008. Eukaryote polyphosphate kinases: is the “Kornberg” complex ubiquitous? Trends Biochem. Sci. 33: 577–582. http://dx.doi.org/10.1016/j.tibs.2008.09.007CrossrefGoogle Scholar

  • [17] Hothorn M., Neumann H., Lenherr E.D., Wehner M., Rybin V., Hassa P.O., Uttenweiler A., Reinhardt M., Schmidt A., Seiler J., Ladurner A.G., Herrmann C., Scheffzek K. & Mayer A. 2009. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324: 513–516. http://dx.doi.org/10.1126/science.1168120CrossrefGoogle Scholar

  • [18] Hurst L.D., Feil E.J. & Rocha E.P.C. 2006. Protein evolution: causes of trends in amino-acid gain and loss. Nature 442: E11–E12. http://dx.doi.org/10.1038/nature05137CrossrefGoogle Scholar

  • [19] Jordan I.K., Kondrashov F.A., Adzhubei I.A., Wolf Y.I., Koonin E.V., Kondrashov A.S. & Sunyaev S. 2005. A universal trend of amino acid gain and loss in protein evolution. Nature 433: 633–638. http://dx.doi.org/10.1038/nature03306CrossrefGoogle Scholar

  • [20] Kondrashov F.A., Rogozin I.B., Wolf Y.I. & Koonin E.V. 2002. Selection in the evolution of gene duplications. Genome Biol. 3: research 8.1–8.9. Google Scholar

  • [21] Kornberg A. 1995. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177: 491–496. Google Scholar

  • [22] Kornberg A., Kornberg S.R. & Simms E.S. 1956. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim. Biophys. Acta 20: 215–227. http://dx.doi.org/10.1016/0006-3002(56)90280-3CrossrefGoogle Scholar

  • [23] Kulaev I.S. 1975. Biochemistry of inorganic polyphosphates. Rev. Physiol. Biochem. Pharmacol. 73: 131–158. http://dx.doi.org/10.1007/BFb0034661CrossrefGoogle Scholar

  • [24] Kulaev I.S. & Vagabov V.M. 1983. Polyphosphate metabolism in micro-organisms. Adv. Microb. Physiol. 24: 83–171. http://dx.doi.org/10.1016/S0065-2911(08)60385-9CrossrefGoogle Scholar

  • [25] Kuroda A. & Kornberg A. 1997 Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 94: 439–442. http://dx.doi.org/10.1073/pnas.94.2.439CrossrefGoogle Scholar

  • [26] Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. http://dx.doi.org/10.1093/bioinformatics/btm404CrossrefGoogle Scholar

  • [27] LeFurgey A., Ingram P. & Blum J.J. 1990. Elemental composition of polyphosphate-containing vacuoles and cytoplasm of Leishmania major. Mol. Biochem. Parasitol. 40: 77–86. http://dx.doi.org/10.1016/0166-6851(90)90081-VCrossrefGoogle Scholar

  • [28] Lynch M. & Conery J.S. 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155. http://dx.doi.org/10.1126/science.290.5494.1151CrossrefGoogle Scholar

  • [29] Muller O., Neumann H., Bayer M.J. & Mayer A. 2003. Role of the Vtc proteins in V-ATPase stability and membrane trafficking. J. Cell Sci. 116: 1107–1115. http://dx.doi.org/10.1242/jcs.00328CrossrefGoogle Scholar

  • [30] Nikel P.I., Chavarría M., Martínez-García E., Taylor A.C., & de Lorenzo V. 2013. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb. Cell Fact. 12: 50. http://dx.doi.org/10.1186/1475-2859-12-50CrossrefGoogle Scholar

  • [31] Nocek B., Kochinyan S., Proudfoot M., Brown G., Evdokimova E., Osipiuk J., Edwards A.M., Savchenko A., Joachimiak A. & Yakunin A.F. 2008. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc. Natl. Acad. Sci. USA 105: 17730–17735. http://dx.doi.org/10.1073/pnas.0807563105CrossrefGoogle Scholar

  • [32] Ogawa N., DeRisi J. & Brown P.O. 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell 11: 4309–4321. http://dx.doi.org/10.1091/mbc.11.12.4309CrossrefGoogle Scholar

  • [33] Ohno S. 1999. Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin. Cell Dev. Biol. 10: 517–522. http://dx.doi.org/10.1006/scdb.1999.0332CrossrefGoogle Scholar

  • [34] Orell A., Navarro C.A., Arancibia R., Mobarec J.C. & Jerez C.A. 2010. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol. Adv. 28: 839–848. http://dx.doi.org/10.1016/j.biotechadv.2010.07.003CrossrefGoogle Scholar

  • [35] Orell A., Navarro C., Rivero M., Aguilar J. & Jerez C. 2012. Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 16: 573–583. http://dx.doi.org/10.1007/s00792-012-0457-9CrossrefGoogle Scholar

  • [36] Rothschild L.J. & Mancinelli R.L. 2001. Life in extreme environments. Nature 409: 1092–1101. http://dx.doi.org/10.1038/35059215CrossrefGoogle Scholar

  • [37] Ruiz F.A., Lea C.R., Oldfield E. & Docampo R. 2004. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J. Biol. Chem. 279: 44250–44257. http://dx.doi.org/10.1074/jbc.M406261200CrossrefGoogle Scholar

  • [38] Ruiz F.A., Marchesini N., Seufferheld M. & Docampo R. 2001. The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J. Biol. Chem. 276: 46196–46203. http://dx.doi.org/10.1074/jbc.M105268200CrossrefGoogle Scholar

  • [39] Sakuraba H., Kawakami R. & Ohshima T. 2005. First archaeal inorganic polyphosphate/ATP-dependent NAD kinase, from hyperthermophilic archaeon Pyrococcus horikoshii: cloning, expression, and characterization. Appl. Environ. Microbiol. 71: 4352–4358. http://dx.doi.org/10.1128/AEM.71.8.4352-4358.2005CrossrefGoogle Scholar

  • [40] Scherer P.A. & Bochem H.P. 1983. Ultrastructural investigation of 12 Methanosarcinae and related species grown on methanol for occurrence of polyphosphatelike inclusions. Can. J. Microbiol. 29: 1190–1199. http://dx.doi.org/10.1139/m83-182CrossrefGoogle Scholar

  • [41] Seufferheld M.J., Alvarez H.M. & Farias M.E. 2008. Role of polyphosphates in microbial adaptation to extreme environments. Appl. Environ. Microbiol. 74: 5867–5874. http://dx.doi.org/10.1128/AEM.00501-08CrossrefGoogle Scholar

  • [42] Seufferheld M.J. & Curzi M.J. 2010. Recent discoveries on the roles of polyphosphates in plants. Plant. Mol. Biol. Rep. 28: 549–559. http://dx.doi.org/10.1007/s11105-010-0187-zCrossrefGoogle Scholar

  • [43] Seufferheld M., Vieira M.C., Ruiz F.A., Rodrigues C.O., Moreno S.N. & Docampo R. 2003. Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J. Biol. Chem. 278: 29971–29978. http://dx.doi.org/10.1074/jbc.M304548200CrossrefGoogle Scholar

  • [44] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. http://dx.doi.org/10.1093/molbev/msr121CrossrefGoogle Scholar

  • [45] Toso D.B., Henstra A.M., Gunsalus R.P. & Zhou Z.H. 2011. Structural, mass and elemental analyses of storage granules in methanogenic archaeal cells. Environ. Microbiol. 13: 2587–2599. http://dx.doi.org/10.1111/j.1462-2920.2011.02531.xCrossrefGoogle Scholar

  • [46] Trifonov E.N. 2004. The triplet code from first principles. J. Biomol. Struct. Dyn. 22: 1–11. http://dx.doi.org/10.1080/07391102.2004.10506975CrossrefGoogle Scholar

  • [47] Werner T.P., Amrhein N. & Freimoser F.M. 2007. Specific localization of inorganic polyphosphate (poly P) in fungal cell walls by selective extraction and immunohistochemistry. Fungal Genet. Biol. 44: 845–852. http://dx.doi.org/10.1016/j.fgb.2007.01.008CrossrefGoogle Scholar

  • [48] Whelan S. & Goldman N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18: 691–699. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003851CrossrefGoogle Scholar

  • [49] Whitehead M.P., Hooley P. & Brown M.R.W. 2013. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation. BMC Res. Notes 6: 221. http://dx.doi.org/10.1186/1756-0500-6-221CrossrefGoogle Scholar

  • [50] Yamagata Y., Watanabe H., Saitoh M. & Namba T. 1991. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352: 516–519. http://dx.doi.org/10.1038/352516a0CrossrefGoogle Scholar

  • [51] Zhang H., Gómez-García M.R., Shi X., Rao N.N. & Kornberg A. 2007. Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis. Proc. Natl. Acad. Sci. USA 104: 16486–16491. http://dx.doi.org/10.1073/pnas.0706847104CrossrefGoogle Scholar

  • [52] Zhang H., Ishige K. & Kornberg A. 2002. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc. Natl. Acad. Sci. USA 99: 16678–16683. http://dx.doi.org/10.1073/pnas.262655199CrossrefGoogle Scholar

  • [53] Zhu Y., Huang W., Lee S.S. & Xu W. 2005. Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis. EMBO Rep. 6: 681–687. http://dx.doi.org/10.1038/sj.embor.7400448CrossrefGoogle Scholar

About the article

Published Online: 2014-01-28

Published in Print: 2014-03-01

Citation Information: Biologia, Volume 69, Issue 3, Pages 263–269, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0324-x.

Export Citation

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Poulami Basu Thakur, Abagail R. Long, Benjamin J. Nelson, Ranjit Kumar, Alexander F. Rosenberg, Michael J. Gray, and Peter J. Turnbaugh
mSystems, 2019, Volume 4, Number 5
Liang Wang, Jianye Yang, Yue Huang, Qinghua Liu, Yaping Xu, Xue Piao, and Michael J. Wise
G3: Genes|Genomes|Genetics, 2019, Volume 9, Number 8, Page 2489
Liang Wang, Qinghua Liu, Xiang Wu, Yue Huang, Michael J. Wise, Zhanzhong Liu, Wei Wang, Junfeng Hu, and Chunying Wang
Scientific Reports, 2019, Volume 9, Number 1
Shawn E. McGlynn, Grayson L. Chadwick, Ariel O'Neill, Mason Mackey, Andrea Thor, Thomas J. Deerinck, Mark H. Ellisman, Victoria J. Orphan, and Haruyuki Atomi
Applied and Environmental Microbiology, 2018, Volume 84, Number 11, Page e00399-18
Liang Wang, Jiawei Yan, Michael J. Wise, Qinghua Liu, James Asenso, Yue Huang, Shiyun Dai, Zhanzhong Liu, Yan Du, and Daoquan Tang
Frontiers in Microbiology, 2018, Volume 9
Steffen Krauser, Thomas Hoffmann, and Elmar Heinzle
ACS Catalysis, 2015, Volume 5, Number 3, Page 1407
Lucia Achbergerová and Jozef Nahálka
Biotechnology Letters, 2014, Volume 36, Number 10, Page 2029

Comments (0)

Please log in or register to comment.
Log in