Jump to ContentJump to Main Navigation
Show Summary Details


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

See all formats and pricing

Select Volume and Issue


A murrel cysteine protease, cathepsin L: bioinformatics characterization, gene expression and proteolytic activity

1Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India

2Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA

3Lab PCN 206, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India

© 2013 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Biologia. Volume 69, Issue 3, Pages 395–406, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-013-0326-8, January 2014

Publication History

Published Online:


Cathepsin L, a lysosomal endopeptidase, is a member of the peptidase C1 family (papain-like family) of cysteine proteinases that cleave peptide bonds of lysosomal proteins. In this study, we report a cathepsin L sequence identified from the constructed cDNA library of striped murrel Channa striatus (designated as CsCath L) using genome sequencing FLXTM technology. The full-length CsCath L contains three eukaryotic thiol protease domains at positions 134-145, 278-288 and 299-318. Phylogenetic analysis revealed that the CsCath L was clustered together with other cathepsin L from teleosts. The three-dimensional structure of CsCath L modelled by the I-Tasser program was compared with structures deposited in the Protein Data Bank to find out the structural similarity of CsCath L with experimentally identified structures. The results showed that the CsCath L exhibits maximum structural identity with pro-cathepsin L from human. The RNA fold structure of CsCath L was predicted along with its minimum free energy (−471.93 kcal/mol). The highest CsCath L gene expression was observed in liver, which was also significantly higher (P < 0.05) than that detected in other tissues taken for analysis. In order to investigate the mRNA transcription profile of CsCath L during infection, C. striatus were injected with fungus (Aphanomyces invadans) and bacteria (Aeromonas hydrophila) and its expression was up-regulated in liver at various time points. Similar to gene expression studies, the highest CsCath L enzyme activity was also observed in liver and its activity was up-regulated by fungal and bacterial infections.

Keywords: Channa striatus; cathepsin L; bioinformatics analysis; epizootic ulcerative syndrome; gene expression; enzyme activity

  • [1] Ahn S., Sung J., Kim N., Lee A., Jeon S., Lee J., Kim J., Chung J. & Lee H. 2010. Molecular cloning, expression and characterization of cathepsin L from mud loach (Misgurnus mizolepis). Appl. Biochem. Biotechnol. 162: 1858–1871. http://dx.doi.org/10.1007/s12010-010-8964-6 [Crossref]

  • [2] Aranishi F., Ogata H., Hara K., Osatomi K. & Ishihara T. 1997. Purification and characterization of cathepsin L from hepatopancreas of carp Cyprinus carpio. Comp. Biochem. Physiol. B Biochem. Mol. 118: 531–537. http://dx.doi.org/10.1016/S0305-0491(97)00111-9 [Crossref]

  • [3] Arockiaraj J., Avin F.A., Vanaraja P., Easwvaran S., Singh A., Othman R.Y. & Bhassu S. 2012. Immune role of MrNFκBI-α, an IκB family member characterized in prawn M. rosenbergii. Fish Shellfish Immunol. 33: 619–625. http://dx.doi.org/10.1016/j.fsi.2012.06.015 [Web of Science] [Crossref]

  • [4] Arockiaraj J., Gnanam A., Muthukrishnan D., Pasupuleti M., Milton J. & Singh A. 2013. An upstream initiator caspase 10 of snakehead murrel Channa striatus, containing DED, p20 and p10 subunits: molecular cloning, gene expression and proteolytic activity. Fish Shellfish Immunol. 34: 505–513. http://dx.doi.org/10.1016/j.fsi.2012.11.040 [Crossref]

  • [5] Arockiaraj J., Vanaraja P., Easwvaran S., Singh A., Alinejaid T., Othman R. & Bhassu S. 2011. Gene profiling and characterization of arginine kinase-1 (MrAK-1) from freshwater giant prawn (Macrobrachium rosenbergii). Fish Shellfish Immunol. 31: 81–89. http://dx.doi.org/10.1016/j.fsi.2011.04.004 [Crossref]

  • [6] Balaji K., Schaschke N., Machleidt W., Catalfamo M. & Henkart P.A. 2002. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196: 493–503. http://dx.doi.org/10.1084/jem.20011836 [Crossref]

  • [7] Caster G. & Cole J.R. 1990. Diagnostic Procedure in Veterinary Bacteriology and Mycology, 5th Edn. Academic Press.

  • [8] Chen L., Zhang M. & Sun L. 2011. Identification and expressional analysis of two cathepsins from half-smooth tongue sole (Cynoglossus semilaevis). Fish Shell?sh Immunol. 31: 1270–1277. http://dx.doi.org/10.1016/j.fsi.2011.09.012 [Crossref] [Web of Science]

  • [9] Chevreux B., Pfisterer T., Drescher B., Driesel A., Müller W., Wetter T. & Suhai S. 2004. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14: 1147–1159. http://dx.doi.org/10.1101/gr.1917404 [Crossref]

  • [10] Conus S. & Simon H. 2010. Cathepsins and their involvement in immune responses. Swiss Med. Wkly 140: w13042. [Web of Science]

  • [11] Coulombe R., Grochulski P., Sivaraman J., Menard R., Mort J. & Cygler M. 1996. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 15: 5492–5503.

  • [12] Dhanaraj M., Haniffa M., Ramakrishnan C. & Singh S.V. 2008. Microbial flora from the Epizootic Ulcerative Syndrome (EUS) infected murrel Channa striatus (Bloch, 1797) in Tirunelveli region. Turk. J. Vet. Anim. Sci. 32: 221–224.

  • [13] Dong W., Xiang L. & Shao J. 2007. Cloning and characterisation of two natural killer enhancing factor genes (NKEF-A and NKEF-B) in pufferfish, Tetraodon nigroviridis. Fish Shellfish Immunol. 22: 1–15. http://dx.doi.org/10.1016/j.fsi.2006.03.007 [Web of Science] [Crossref]

  • [14] Felbor U., Kessler B., Mothes W., Goebel H., Ploegh H., Bronson R. & Olsen B. 2002. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl. Acad. Sci. USA 99: 7883–7888. http://dx.doi.org/10.1073/pnas.112632299 [Crossref]

  • [15] Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41: 95–98.

  • [16] Heu M., Kim H., Cho D., Godber J. & Pyeun J. 1997. Purification and characterization of cathepsin L-like enzyme from the muscle of anchovy, Engraulis japonica. Comp. Biochem. Physiol. B Biochem. Mol. 118: 523–529. http://dx.doi.org/10.1016/S0305-0491(97)00181-8 [Crossref]

  • [17] Karrer K., Peiffer S. & Ditomas M. 1993. Two distinct gene subfamilies within the family of cysteine protease genes. Proc. Natl. Acad. Sci. USA 90: 3063–3067. http://dx.doi.org/10.1073/pnas.90.7.3063 [Crossref]

  • [18] Kim J., Jeong J., Park H., Kim E., Kim H., Chae Y., Kim D. & Park C. 2011. Molecular identification and expression analysis of cathepsins O and S from rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol. 31: 578–587. http://dx.doi.org/10.1016/j.fsi.2011.07.007 [Crossref]

  • [19] Lee J., Chen H. & Jiang S. 1993. Purification and characterization of proteinases identified as cathepsins L and L-like (58 kDa) proteinase from mackerel (Scomber australasicus). Biosci. Biotechnol. Biochem. 57: 1470–1476. http://dx.doi.org/10.1271/bbb.57.1470 [Crossref]

  • [20] Livak K. & Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 T−ΔΔC method. Methods 25: 402–408. http://dx.doi.org/10.1006/meth.2001.1262 [Crossref]

  • [21] Li W., Jin X., He L., Jiang H., Gong Y., Xie Y. & Wang Q. 2010. Molecular cloning, characterization, expression and activity analysis of cathepsin L in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 29: 1010–1018. http://dx.doi.org/10.1016/j.fsi.2010.08.007 [Crossref]

  • [22] Li W.W., He L., Jin X.K., Jiang H., Chen L.L., Wang Y. & Wang Q. 2011. Molecular cloning, characterization and expression analysis of cathepsin A gene in Chinese mitten crab, Eriocheir sinensis. Peptides 32: 518–525. http://dx.doi.org/10.1016/j.peptides.2010.08.027 [Web of Science] [Crossref]

  • [23] Ma J., Zhang D., Jiang J., Cui S., Pu H. & Jiang S. 2010. Molecular characterization and expression analysis of cathepsin L1 cysteine protease from pearl oyster Pinctada fucata. Fish Shellfish Immunol. 29: 501–507. http://dx.doi.org/10.1016/j.fsi.2010.05.006 [Crossref]

  • [24] Matsumoto I., Watanabe H., Abe K., Arai S. & Emori Y. 1995. A putative digestive cysteine proteinase from Drosophila melanogaster is predominantly expressed in the embryonic and larval midgut. Eur. J. Biochem. 227: 582–587. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20428.x [Crossref]

  • [25] Menard R. & Storer A. 1992. Oxyanion hole interactions in serine and cysteine proteases. Biol. Chem. 373: 393–400.

  • [26] Press C.M. & Evensen O. 1999. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 9: 309–318. http://dx.doi.org/10.1006/fsim.1998.0181 [Crossref]

  • [27] Rawlings N., Morton F. & Barrett A. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34: D270–D272. http://dx.doi.org/10.1093/nar/gkj089 [Crossref]

  • [28] Reinheckel T., Deussing J., Roth W. & Peters C. 2001. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol. Chem. 382: 735–741.

  • [29] Roy A., Kucukural A. & Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protocols 5: 725–738. http://dx.doi.org/10.1038/nprot.2010.5 [Crossref] [Web of Science]

  • [30] Stephens A., Rojo L., Araujo-Bernal S., Garcia-Carreno F. & Muhlia-Almazan A. 2012. Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissuesspecific expression and biological activity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 161: 32–40. http://dx.doi.org/10.1016/j.cbpb.2011.09.004 [Crossref]

  • [31] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. http://dx.doi.org/10.1093/molbev/msr121 [Crossref]

  • [32] Tingaud-Sequeira A. & Cerda J. 2007. Phylogenetic relationships and gene expression pattern of three different cathepsin L (Ctsl) isoforms in zebrafish: Ctsla is the putative yolk processing enzyme. Gene 386: 98–106. http://dx.doi.org/10.1016/j.gene.2006.08.018 [Crossref] [Web of Science]

  • [33] Trent M., Stead C., Tran A. & Hankins J. 2006. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 12: 205–223. http://dx.doi.org/10.1179/096805106X118825 [Crossref]

  • [34] Turk V., Turk B. & Turk D. 2001. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20: 4629–4633. http://dx.doi.org/10.1093/emboj/20.17.4629 [Crossref]

  • [35] Uinuk-Ool T., Takezaki N., Kuroda N., Figueroa F., Sato A., Samonte I., Mayer W. & Klein J. 2003. Phylogeny of antigenprocessing enzymes: cathepsins of a cephalochordate, an agnathan and a bony fish. Scand. J. Immunol. 58: 436–448. http://dx.doi.org/10.1046/j.1365-3083.2003.01322.x [Crossref]

  • [36] Vernet T., Berti P.J., De Montigny C., Musil R., Tessier D.C., Menard R., Magny M.C., Storer A.C. & Thomas D.Y. 1995. Processing of the papain precursor. The ionization of a conserved amino acid motif within the pro region participates in the regulation of intramolecular processing. J. Biol. Chem. 270: 10838–10846. http://dx.doi.org/10.1074/jbc.270.18.10838 [Crossref]

  • [37] Visessanguan W., Benjakul S. & An H. 2003. Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134: 477–487. http://dx.doi.org/10.1016/S1096-4959(02)00293-2 [Crossref]

  • [38] Yamashita M. & Konagaya S. 1990. Purification and characterization of cathepsin L from the white muscle of chum salmon, Oncorhynchus keta. Comp. Biochem. Physiol. B 96: 247–252.

  • [39] Yeh H. & Klesius P. 2009. Channel catfish, Ictalurus punctatus, cysteine proteinases: cloning, characterisation and expression of cathepsin H and L. Fish Shellfish Immunol. 26: 332–338. http://dx.doi.org/10.1016/j.fsi.2008.11.010 [Crossref]

  • [40] Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40. http://dx.doi.org/10.1186/1471-2105-9-40 [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Venkatesh Kumaresan, Annie J. Gnanam, Mukesh Pasupuleti, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Ramasamy Harikrishnan, and Jesu Arockiaraj
Gene, 2015, Volume 564, Number 1, Page 53
Jesu Arockiaraj, Rajesh Palanisamy, Venkatesh Kumaresan, Prasanth Bhatt, Mukesh Chaurasia, Marimuthu Kasi, Mukesh Pasupuleti, and Annie Gnanam
Biologia, 2014, Volume 69, Number 8
Jesu Arockiaraj, Rajesh Palanisamy, Abirami Arasu, Akila Sathyamoorthi, Venkatesh Kumaresan, Prasanth Bhatt, Mukesh Kumar Chaurasia, Mukesh Pasupuleti, and Annie J. Gnanam
Molecular Immunology, 2015, Volume 63, Number 2, Page 586
Prasanth Bhatt, Mukesh Kumar Chaurasia, Rajesh Palanisamy, Venkatesh Kumaresan, Abirami Arasu, Akila Sathyamoorthi, Annie J. Gnanam, Marimuthu Kasi, Mukesh Pasupuleti, Harikrishnan Ramaswamy, and Jesu Arockiaraj
Fish & Shellfish Immunology, 2014, Volume 39, Number 2, Page 245

Comments (0)

Please log in or register to comment.