Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 69, Issue 6


Recent insight in α-glucan metabolism in probiotic bacteria

Marie Møller
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yong Goh
  • Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Box 7624, Raleigh, NC, 27695, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Viborg
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joakim Andersen
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Todd Klaenhammer
  • Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Box 7624, Raleigh, NC, 27695, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Birte Svensson
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maher Abou Hachem
  • Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-04 | DOI: https://doi.org/10.2478/s11756-014-0367-7


α-Glucans from bacterial exo-polysaccharides or diet, e.g., resistant starch, legumes and honey are abundant in the human gut and fermentation of resistant fractions of these α-glucans by probiotic lactobacilli and bifidobacteria impacts human health positively. The ability to degrade polymeric α-glucans is confined to few strains encoding extracellular amylolytic activities of glycoside hydrolase (GH) family 13. Debranching pullulanases of the subfamily GH13_14 are the most common extracellular GH13 enzymes in lactobacilli, whereas corresponding enzymes are mainly α-amylases and amylopullulanases in bifidobacteria. Extracellular GH13 enzymes from both genera are frequently modular and possess starch binding domains, which are important for efficient catalysis and possibly to mediate attachment of cells to starch granules. α-1,6-Linked glucans, e.g., isomalto-oligosaccharides are potential prebiotics. The enzymes targeting these glucans are the most abundant intracellular GHs in bifidobacteria and lactobacilli. A phosphoenolpyruvate-dependent phosphotransferase system and a GH4 phospho-α-glucosidase are likely involved in metabolism of isomaltose and isomaltulose in probiotic lactobacilli based on transcriptional analysis. This specificity within GH4 is unique for lactobacilli, whereas canonical GH13 31 α-1,6-glucosidases active on longer α-1,6-gluco-oligosaccharides are ubiquitous in bifidobacteria and lactobacilli. Malto-oligosaccharide utilization operons encode more complex, diverse, and less biochemically understood activities in bifidobacteria compared to lactobacilli, where important members have been recently described at the molecular level. This review presents some aspects of α-glucan metabolism in probiotic bacteria and highlights vague issues that merit experimental effort, especially oligosaccharide uptake and the functionally unassigned enzymes, featuring in this important facet of glycan turnover by members of the gut microbiota.

Keywords: prebiotic; oligosaccharide uptake; ATP-binding cassette transport system; phosphotransferase system; transcriptional analysis; isomalto-oligosaccharide; malto-oligosaccharide

  • [1] Abou Hachem M., Andersen J.M., Barrangou R., Møller M.S., Fredslund F., Majumder A., Ejby M., Lahtinen S.J., Jacobsen S., Lo Leggio L., Goh Y.J., Klaenhammer T.R. & Svensson B. 2013. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatal. Biotransform. 31: 226–235. http://dx.doi.org/10.3109/10242422.2013.828048CrossrefGoogle Scholar

  • [2] Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2012. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM. PloS One 7: e44409. http://dx.doi.org/10.1371/journal.pone.0044409CrossrefGoogle Scholar

  • [3] Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2013. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics 14: 312. http://dx.doi.org/10.1186/1471-2164-14-312Google Scholar

  • [4] Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H.B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E.G., Wang J., Guarner F., Pedersen O., de Vos W.M., Brunak S., Dore J., Weissenbach J., Ehrlich S.D. & Bork P. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180. http://dx.doi.org/10.1038/nature09944CrossrefGoogle Scholar

  • [5] Barrangou R., Briczinski E.P., Traeger L.L., Loquasto J.R., Richards M., Horvath P., Coute-Monvoisin A.C., Leyer G., Rendulic S., Steele J.L., Broadbent J.R., Oberg T., Dudley E.G., Schuster S., Romero D.A. & Roberts R.F. 2009. Comparison of the complete genome sequences of Bifidobacterium animalis subsp lactis DSM 10140 and Bl-04. J. Bacteriol. 191: 4144–4151. http://dx.doi.org/10.1128/JB.00155-09CrossrefGoogle Scholar

  • [6] Belanger A.E. & Hatfull G.F. 1999. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol. 181: 6670–6678. Google Scholar

  • [7] Blazek J. & Gilbert E.P. 2010. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11: 3275–3289. http://dx.doi.org/10.1021/bm101124tCrossrefGoogle Scholar

  • [8] Busuioc M., Mackiewicz K., Buttaro B.A. & Piggot P.J. 2009. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J. Bacteriol. 191: 7315–7322. http://dx.doi.org/10.1128/JB.00425-09CrossrefGoogle Scholar

  • [9] Cameron E.A., Maynard M.A., Smith C.J., Smith T.J., Koropatkin N.M. & Martens E.C. 2012. Multidomain carbohydratebinding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J. Biol. Chem. 287: 34614–34625. http://dx.doi.org/10.1074/jbc.M112.397380CrossrefGoogle Scholar

  • [10] Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238. http://dx.doi.org/10.1093/nar/gkn663CrossrefGoogle Scholar

  • [11] Cantarel B.L., Lombard V. & Henrissat B. 2012. Complex carbohydrate utilization by the healthy human microbiome. PloS One 7: e28742. http://dx.doi.org/10.1371/journal.pone.0028742CrossrefGoogle Scholar

  • [12] Christiansen C., Abou Hachem M., Janecek S., Viksø-Nielsen A., Blennow A. & Svensson B. 2009. The carbohydrate-binding module family 20 — diversity, structure, and function. FEBS J. 276: 5006–5029. http://dx.doi.org/10.1111/j.1742-4658.2009.07221.xCrossrefGoogle Scholar

  • [13] Clemente J.C., Ursell L.K., Parfrey L.W. & Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258–1270. http://dx.doi.org/10.1016/j.cell.2012.01.035CrossrefGoogle Scholar

  • [14] de Vrese M. & Schrezenmeir J. 2008. Probiotics, prebiotics, and synbiotics, pp. 1–66. In: Stahl U.D.U.E.B.N.E. (ed.) Food Biotechnology. http://dx.doi.org/10.1007/10_2008_097CrossrefGoogle Scholar

  • [15] Duboc P. & Mollet B. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759–768. http://dx.doi.org/10.1016/S0958-6946(01)00119-4CrossrefGoogle Scholar

  • [16] Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E. & Relman D.A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638. http://dx.doi.org/10.1126/science.1110591CrossrefGoogle Scholar

  • [17] Eydallin G., Montero M., Almagro G., Sesma M.T., Viale A.M., Munoz F.J., Rahimpour M., Baroja-Fernandez E. & Pozueta-Romer J. 2010. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res. 17: 61–71. http://dx.doi.org/10.1093/dnares/dsp028CrossrefGoogle Scholar

  • [18] Eydallin G., Viale A.M., Moran-Zorzano M.T., Munoz F.J., Montero M., Baroja-Fernandez E. & Pozueta-Romero J. 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett. 581: 2947–2953. http://dx.doi.org/10.1016/j.febslet.2007.05.044Google Scholar

  • [19] Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., Rosenbaum M. & Gordon J.I. 2013. The long-term stability of the human gut microbiota. Science 341: 44–53. http://dx.doi.org/10.1126/science.1237439CrossrefGoogle Scholar

  • [20] Flint H.J., Duncan S.H., Scott K.P. & Louis P. 2007. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9: 1101–1111. http://dx.doi.org/10.1111/j.1462-2920.2007.01281.xCrossrefGoogle Scholar

  • [21] Fredslund F., Abou Hachem M., Larsen R.J., Sørensen P.G., Coutinho P.M., Lo Leggio L. & Svensson B. 2011. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412: 466–480. http://dx.doi.org/10.1016/j.jmb.2011.07.057CrossrefGoogle Scholar

  • [22] Fuentes-Zaragoza E., Sanchez-Zapata E., Sendra E., Sayas E., Navarro C., Fernandez-Lopez J. & Perez-Alvarez J.A. 2011. Resistant starch as prebiotic: a review. Starch 63: 406–415. http://dx.doi.org/10.1002/star.201000099CrossrefGoogle Scholar

  • [23] Goffin D., Delzenne N., Blecker C., Hanon E., Deroanne C. & Paquot M. 2011. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit. Rev. Food Sci. Nutr. 51: 394–409. http://dx.doi.org/10.1080/10408391003628955CrossrefGoogle Scholar

  • [24] Goh Y.J. & Klaenhammer T.R. 2013. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon. Mol. Microbiol. 89: 1187–1200. http://dx.doi.org/10.1111/mmi.12338CrossrefGoogle Scholar

  • [25] Jones S.A., Jorgensen M., Chowdhury F.Z., Rodgers R., Hartline J., Leatham M.P., Struve C., Krogfelt K.A., Cohen P.S. & Conway T. 2008. Glycogen and maltose utilization by Escherichia coli O157: H7 in the mouse intestine. Infect. Immun. 76: 2531–2540. http://dx.doi.org/10.1128/IAI.00096-08CrossrefGoogle Scholar

  • [26] Kaneko T., Kohmoto T., Kikuchi H., Shiota M., Iino H. & Mitsuoka T. 1994. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci. Biotechnol. Biochem. 58: 2288–2290. http://dx.doi.org/10.1271/bbb.58.2288CrossrefGoogle Scholar

  • [27] Knudsen A., van Zanten G.C., Jensen S.L., Forssten S.D., Saarinen M., Lahtinen S.J., Bandsholm O., Svensson B., Jespersen L. & Blennow A. 2013. Comparative fermentation of insoluble carbohydrates in an in vitro human feces model spiked with Lactobacillus acidophilus NCFM. Starch-Stärke 65: 346–353. Google Scholar

  • [28] Kootte R.S., Vrieze A., Holleman F., Dallinga-Thie G.M., Zoetendal E.G., de Vos W.M., Groen A.K., Hoekstra J.B.L., Stroes E.S. & Nieuwdorp M. 2012. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 14: 112–120. http://dx.doi.org/10.1111/j.1463-1326.2011.01483.xCrossrefGoogle Scholar

  • [29] Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., Schlegel M.L., Tucker T.A., Schrenzel M.D., Knight R. & Gordon J.I. 2008. Evolution of mammals and their gut microbes. Science 320: 1647–1651. http://dx.doi.org/10.1126/science.1155725CrossrefGoogle Scholar

  • [30] Leyer G.J., Li S., Mubasher M.E., Reifer C. & Ouwehand A.C. 2009. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124: E172–E179. http://dx.doi.org/10.1542/peds.2008-2666CrossrefGoogle Scholar

  • [31] Loquasto J.R., Barrangou R., Dudley E.G., Stahl B., Chen C. & Roberts R.F. 2013. Bifidobacterium animalis subsp. lactis ATCC 27673 is a genomically unique strain within its conserved subspecies. Appl. Environ. Microbiol. 79: 6903–6910. http://dx.doi.org/10.1128/AEM.01777-13Google Scholar

  • [32] Lozupone C.A., Hamady M., Cantarel B.L., Coutinho P.M., Henrissat B., Gordon J.I. & Knight R. 2008. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl. Acad. Sci. USA 105: 15076–15081. http://dx.doi.org/10.1073/pnas.0807339105CrossrefGoogle Scholar

  • [33] McFall-Ngai M., Hadfield M.G., Bosch T.C.G., Carey H.V., Domazet-Loso T., Douglas A.E., Dubilier N., Eberl G., Fukami T., Gilbert S.F., Hentschel U., King N., Kjelleberg S., Knoll A.H., Kremer N., Mazmanian S.K., Metcalf J.L., Nealson K., Pierce N.E., Rawls J.F., Reid A., Ruby E.G., Rumpho M., Sanders J.G., Tautz D. & Wernegreen J.J. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110: 3229–3236. http://dx.doi.org/10.1073/pnas.1218525110CrossrefGoogle Scholar

  • [34] Møller M.S., Fredslund F., Majumder A., Nakai H., Poulsen J.C.N., Lo Leggio L., Svensson B. & Abou Hachem M. 2012. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol. 194: 4249–4259. http://dx.doi.org/10.1128/JB.00622-12CrossrefGoogle Scholar

  • [35] Morgan X.C., Segata N. & Huttenhower C. 2013. Biodiversity and functional genomics in the human microbiome. Trends Genet. 29: 51–58. http://dx.doi.org/10.1016/j.tig.2012.09.005CrossrefGoogle Scholar

  • [36] Muegge B.D., Kuczynski J., Knights D., Clemente J.C., Gonzalez A., Fontana L., Henrissat B., Knight R. & Gordon J.I. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332: 970–974. http://dx.doi.org/10.1126/science.1198719CrossrefGoogle Scholar

  • [37] Nakai H., Baumann M.J., Petersen B.O., Westphal Y., Schols H., Dilokpimol A., Abou Hachem M., Lahtinen S.J., Duus J.O. & Svensson B. 2009. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel α-glucosides through reverse phosphorolysis by maltose phosphorylase. FEBS J. 276: 7353–7365. http://dx.doi.org/10.1111/j.1742-4658.2009.07445.xCrossrefGoogle Scholar

  • [38] Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W. & Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262–1267. http://dx.doi.org/10.1126/science.1223813CrossrefGoogle Scholar

  • [39] Petrova P., Petrov K. & Stoyancheva G. 2013. Starch-modifying enzymes of lactic acid bacteria — structures, properties, and applications. Starch-Stärke 65: 34–47. Google Scholar

  • [40] Rastall R.A. 2010. Functional oligosaccharides: application and manufacture. Annu. Rev. Food Scie. Technol. 1: 305–339. http://dx.doi.org/10.1146/annurev.food.080708.100746CrossrefGoogle Scholar

  • [41] Rodriguez-Sanoja R., Ruiz B., Guyot J.P. & Sanchez S. 2005. Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl. Environ. Microbiol. 71: 297–302. http://dx.doi.org/10.1128/AEM.71.1.297-302.2005CrossrefGoogle Scholar

  • [42] Sanders M.E. & Klaenhammer T.R. 2001. Invited review: The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319–331. http://dx.doi.org/10.3168/jds.S0022-0302(01)74481-5CrossrefGoogle Scholar

  • [43] Sanz M.L., Gibson G.R. & Rastall R.A. 2005. Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 53: 5192–5199. http://dx.doi.org/10.1021/jf050276wCrossrefGoogle Scholar

  • [44] Sarbini S.R., Kolida S., Gibson G.R. & Rastall R.A. 2013. In vitro fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and obese human subjects. Br. J. Nutr. 109: 1980–1989. http://dx.doi.org/10.1017/S0007114512004205CrossrefGoogle Scholar

  • [45] Scott K.P., Gratz S.W., Sheridan P.O., Flint H.J. & Duncan S.H. 2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69: 52–60. http://dx.doi.org/10.1016/j.phrs.2012.10.020CrossrefGoogle Scholar

  • [46] Sommer F. & Baeckhed F. 2012. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11: 227–238. http://dx.doi.org/10.1038/nrmicro2974CrossrefGoogle Scholar

  • [47] Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562. http://dx.doi.org/10.1093/protein/gzl044CrossrefGoogle Scholar

  • [48] Tang M.L.K., Lahtinen S.J. & Boyle R.J. 2010. Probiotics and prebiotics: clinical effects in allergic disease. Curr. Opin. Pediatr. 22: 626–634. Google Scholar

  • [49] Tester R.F., Karkalas J. & Qi X. 2004. Starch — composition, fine structure and architecture. J. Cereal Sci. 39: 151–165. http://dx.doi.org/10.1016/j.jcs.2003.12.001CrossrefGoogle Scholar

  • [50] Thompson J., Jakubovics N., Abraham B., Hess S. & Pikis A. 2008. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334. J. Bacteriol. 190: 3362–3373. http://dx.doi.org/10.1128/JB.02008-07CrossrefGoogle Scholar

  • [51] Vigsnæs L.K., Nakai H., Hemmingsen L., Andersen J.M., Lahtinen S.J., Rasmussen L.E., Abou Hachem M., Petersen B.O., Duus J.O., Meyer A.S., Licht T.R. & Svensson B. 2013. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Food Funct. 4: 784–793. http://dx.doi.org/10.1039/c3fo30357hCrossrefGoogle Scholar

  • [52] Wallace T.C., Guarner F., Madsen K., Cabana M.D., Gibson G., Hentges E. & Sanders M.E. 2011. Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69: 392–403. http://dx.doi.org/10.1111/j.1753-4887.2011.00402.xCrossrefGoogle Scholar

  • [53] Whelan K. 2011. Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr. Opin. Clin. Nutr. Metab. Care 14: 581–587. http://dx.doi.org/10.1097/MCO.0b013e32834b8082CrossrefGoogle Scholar

  • [54] Yen C.H., Tseng Y.H., Kuo Y.W., Lee M.C. & Chen H.L. 2011. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people — a placebocontrolled, diet-controlled trial. Nutrition 27: 445–450. http://dx.doi.org/10.1016/j.nut.2010.05.012CrossrefGoogle Scholar

About the article

Published Online: 2014-05-04

Published in Print: 2014-06-01

Citation Information: Biologia, Volume 69, Issue 6, Pages 713–721, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-014-0367-7.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alessandra Fontana, Irene Falasconi, Paola Molinari, Laura Treu, Arianna Basile, Alessandro Vezzi, Stefano Campanaro, and Lorenzo Morelli
Frontiers in Microbiology, 2019, Volume 10
Shanshan Zhang, Haijuan Hu, Lufeng Wang, Fengxia Liu, and Siyi Pan
Food Chemistry, 2017
Petya Velikova, Anton Stoyanov, Galya Blagoeva, Luiza Popova, Kaloyan Petrov, Velitchka Gotcheva, Angel Angelov, and Penka Petrova
Starch - Stärke, 2016, Volume 68, Number 9-10, Page 953
Yuxiang Bai, Markus Böger, Rachel Maria van der Kaaij, Albert Jan Jacob Woortman, Tjaard Pijning, Sander Sebastiaan van Leeuwen, Alicia Lammerts van Bueren, and Lubbert Dijkhuizen
Journal of Agricultural and Food Chemistry, 2016, Volume 64, Number 14, Page 2941
Yong Jun Goh and Todd R. Klaenhammer
Annual Review of Food Science and Technology, 2015, Volume 6, Number 1, Page 137

Comments (0)

Please log in or register to comment.
Log in