Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 7

Issues

Overexpression of Pp14-3-3 from Pyrus pyrifolia fruit increases drought and salt tolerance in transgenic tobacco plant

Hongli Li
  • Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diqiu Liu
  • Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian Rao
  • Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yalong Liu
  • Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Feng Ge
  • Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chaoyin Chen
  • Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-19 | DOI: https://doi.org/10.2478/s11756-014-0384-6

Abstract

Drought and salinity are the major abiotic stresses, which reduce agricultural productivity. In plants, 14-3-3s function as regulators of many target proteins through direct protein-protein interactions and play an important role during response to abiotic stresses. Here we report that CaMV 35S promoter driven overexpression of a Pyrus pyrifolia 14-3-3 gene, Pp14-3-3, improves drought and NaCl tolerance in T1 generation plants of transgenic tobacco (Nicotiana tabacum L. cv Xanthi). Under drought and NaCl stresses, the Pp14-3-3 was largely expressed in T1 transgenic tobacco lines, and compared with the wild-type (WT), transgenic tobacco plants showed relatively normal growth condition. In addition, the levels of membrane lipid peroxidation in T1 transgenic lines were definitely lower than that in WT according to the significantly decreased content of malondialdehyde. Meanwhile, the T1 transgenic tobacco lines showed significantly slower superoxide anion production rate than the WT under abiotic stress. Moreover, both the glutathione S-transferase (GST) and ascorbate peroxidase (APX) activities in T1 transgenic lines were markedly higher than those in WT. GSTs and APXs are important components of plant antioxidant system, and the results of present study suggested that Pp14-3-3 should play a crucial role in reducing oxidative damage caused by drought and salt stresses.

Keywords: 14-3-3; drought tolerance; oxidative stress; Pyrus pyrifolia; salt tolerance; transgenic tobacco

  • [1] Campo S., Peris-Peris C., Montesinos L., Peńas G., Messeguer J. & San Segundo B. 2012. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J. Exp. Bot. 63: 983–999. http://dx.doi.org/10.1093/jxb/err328CrossrefGoogle Scholar

  • [2] Chelysheva V.V., Smolenskaya I.N., Trofimova M.C., Babakov A.V. & Muromtsev G.S. 1999. Role of the 14-3-3 proteins in the regulation of H+-ATPase activity in the plasma membrane of suspension-cultured sugar beet cells under cold stress. FEBS Lett. 456: 22–26. http://dx.doi.org/10.1016/S0014-5793(99)00923-0CrossrefGoogle Scholar

  • [3] Chen F., Li Q., Sun L. & He Z. 2006. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res. 13: 53–63. http://dx.doi.org/10.1093/dnares/dsl001CrossrefGoogle Scholar

  • [4] Denison F.C, Paul A.L, Zupanska A.K. & Ferl R.J. 2011. 14-3-3 proteins in plant physiology. Semin. Cell Dev. 22: 720–772. Google Scholar

  • [5] Ferl R.J., Manak M.S. & Reyes M.F. 2002. The 14-3-3s. Genome Biol. 3: reviews 3010. Google Scholar

  • [6] Foolad M.R. 2007. Current status of breeding tomatoes for salt and drought tolerance, pp. 669–700. In: Jenks M.A., Hasegawa P.M. & Mohan Jain S. (eds), Advances in Molecular Breeding toward Drought and Salt Tolerant Crops, Springer Press, New York. http://dx.doi.org/10.1007/978-1-4020-5578-2_27CrossrefGoogle Scholar

  • [7] Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G. & Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231. http://dx.doi.org/10.1126/science.227.4691.1229CrossrefGoogle Scholar

  • [8] Le Martret B., Poage M., Shiel K., Nugent G.D. & Dix P.J. 2011. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 9: 661–673. http://dx.doi.org/10.1111/j.1467-7652.2011.00611.xCrossrefWeb of ScienceGoogle Scholar

  • [9] Li X.Y. & Dhaubhadel S. 2011. Soybean 14-3-3 gene family: identification and molecular characterization. Planta 233: 569–582. http://dx.doi.org/10.1007/s00425-010-1315-6CrossrefGoogle Scholar

  • [10] Liu D., He X., Li W., Chen C. & Ge F. 2012. Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell Tiss. Organ Cult. 111: 29–39. http://dx.doi.org/10.1007/s11240-012-0167-0Web of ScienceCrossrefGoogle Scholar

  • [11] Lukaszewicz M., Matysiak-Kata I., Aksamit A. & Szopa J. 2002. 14-3-3 protein regulation of the antioxidant capacity of transgenic potato tubers. Plant Sci. 163: 125–130. http://dx.doi.org/10.1016/S0168-9452(02)00081-XCrossrefGoogle Scholar

  • [12] Nakano Y. & Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867–880. Google Scholar

  • [13] Roberts M.R., Salinas J. & Collinge D.B. 2002. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol. Biol. 50: 1031–1039. http://dx.doi.org/10.1023/A:1021261614491CrossrefGoogle Scholar

  • [14] Roxas V.P., Lodhi S.A., Garrett D.K., Mahan J.R. & Allen R.D. 2000. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol. 41: 1229–1234. CrossrefGoogle Scholar

  • [15] Roxas V.P., Smith R.J., Allen E.R. & Allen R.D. 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15: 988–991. http://dx.doi.org/10.1038/nbt1097-988CrossrefGoogle Scholar

  • [16] Sairam R.K. & Tyagi A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86: 407–421. Google Scholar

  • [17] Schoonheim P.J., Sinnige M.P., Casaretto J.A., Veiga H., Bunney T.D., Quatrano R.S. & De Boer A.H. 2007. 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J. 49: 289–301. http://dx.doi.org/10.1111/j.1365-313X.2006.02955.xCrossrefWeb of ScienceGoogle Scholar

  • [18] Smirnoff N. 2005. Antioxidants and Reactive Oxygen Species in Plants. Blackwell Science, Oxford, 293 pp. http://dx.doi.org/10.1002/9780470988565CrossrefGoogle Scholar

  • [19] Sun G., Xie F. & Zhang B. 2011. Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.). Funct. Integr. Genomics 11: 627–636. http://dx.doi.org/10.1007/s10142-011-0242-3CrossrefGoogle Scholar

  • [20] Veal E.A., Toone W.M., Jones N. & Morgan B.A. 2002. Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J. Biol. Chem. 277: 35523–35531. http://dx.doi.org/10.1074/jbc.M111548200CrossrefGoogle Scholar

  • [21] Vinocur B. & Altman A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotechnol. 16: 123–132. http://dx.doi.org/10.1016/j.copbio.2005.02.001CrossrefGoogle Scholar

  • [22] Wang A.G. & Luo G.H. 1990. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communications 26: 55–57 (in Chinese). Google Scholar

  • [23] Wang G.Y., Liu D.Q., Rao J., Li M., Sun B.Z. & Ding Y.M. 2012. Isolation and expression analysis of a 14-3-3 gene from Pyrus pyrifolia Nakai cv. Huobali. Acta Agriculturae Boreali — Sinica 27: 1–8 (in Chinese). Google Scholar

  • [24] Wei X., Zhang Z., Li Y., Wang X., Shao S., Chen L. & Li X. 2009. Expression analysis of two novel cotton 14-3-3 genes in root development and in response to salt stress. Progr. Nat. Sci. 19: 173–178. http://dx.doi.org/10.1016/j.pnsc.2008.06.016Web of ScienceCrossrefGoogle Scholar

  • [25] Xu W.F. & Shi W.M. 2006. Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot. 98: 965–974. http://dx.doi.org/10.1093/aob/mcl189CrossrefGoogle Scholar

  • [26] Xu W.F. & Shi W.M. 2007. Mechanisms of salt tolerance in transgenic Arabidopsis thaliana constitutively overexpressing the tomato 14-3-3 protein TFT7. Plant Soil 301: 17–28. http://dx.doi.org/10.1007/s11104-007-9403-5CrossrefGoogle Scholar

  • [27] Yan J., He C., Wang J., Mao Z., Holaday S.A., Allen R.D. & Zhang H. 2004. Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol. 45: 1007–1014. Google Scholar

  • [28] Zhang H., Wang J., Nickel U, Allen R.D. & Goodman H.M. 1997. Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 34: 967–971. http://dx.doi.org/10.1023/A:1005814109732CrossrefGoogle Scholar

About the article

Published Online: 2014-08-19

Published in Print: 2014-07-01


Citation Information: Biologia, Volume 69, Issue 7, Pages 880–887, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-014-0384-6.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Huini Xu, Xiuling Zhao, Chuanlong Guo, Limei Chen, and Kunzhi Li
Plant Physiology and Biochemistry, 2016, Volume 106, Page 187

Comments (0)

Please log in or register to comment.
Log in