Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 69, Issue 7


Optimization of particle bombardment parameters for DNA delivery into the male flowers of banana

Fatemeh Mahdavi / Maziah Mahmood
  • Department of Biochemistry, Faculty of Biotechnology and Molecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor DarulEhsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Normah Noor
Published Online: 2014-08-19 | DOI: https://doi.org/10.2478/s11756-014-0391-7


The possibility of increasing the efficiency of banana transformation was investigated by particle bombardment of the male flowers of banana plants for constitutive expression of gfp gene. The effects of particle bombardment parameters, such as acceleration pressure, bombardment distance, chamber vacuum pressure, gold microcarrier size, gold quantity, DNA quantity, number of bombardments and pre-culture were examined. Single cauliflower-like bodies (CLBs) clusters, induced from meristemic parts of Musa sapientum cv. Nangka (AAB) male flowers, were bombarded by pCambia1304 plasmid carrying gfp gene driven by the CaMV 35S promoter. Optimal transient expression of green-fluorescent protein (GFP) was obtained when the three-day old cultured tissues were bombarded two times at 1100 psi helium pressure. However, the highest GFP expression was observed when 9 cm was applied as bombardment distance with 28 mmHg chamber vacuum pressure. Gold particle with 1 μm diameter at 60 μg/μL concentrations coated with 1.5 μg/μL of DNA have been used as the optimum bombardment parameter since GFP expression was significantly different compared to other conditions. Application of optimized condition proved effective for the generation of stable transgenic banana plants. PCR and southern blot analyses confirmed the presence and integration of gfp gene in genomic DNA of transformed plants. Transformation frequency achieved with the optimized protocol was 7.5% which was significantly higher than the conventional protocol.

Keywords: banana; genetic engineering; green fluorescent protein; male inflorescence; particle bombardment; pCambia1304

  • [1] Able J.A., Rathus C. & Godwin I.D. 2001. The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell. Dev. Biol. Plant 37: 341–348. http://dx.doi.org/10.1007/s11627-001-0061-7CrossrefGoogle Scholar

  • [2] Becker D.K. & Dale J.L. 2004. Transformation of banana using microprojectile bombardment, pp. 131–143. In: Curtis I.S. (ed.) Transgenic Crops of the World — Essential Protocols. Kluwer Academic Publishers, Dordrecht, Boston, London. http://dx.doi.org/10.1007/978-1-4020-2333-0_10CrossrefGoogle Scholar

  • [3] Becker D.K., Dugdale B., Smith M.K., Harding R.M. & Dale J.L. 2000. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep. 19: 229–234. http://dx.doi.org/10.1007/s002990050004CrossrefGoogle Scholar

  • [4] Christou P. 1995. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85: 13–27. http://dx.doi.org/10.1007/BF00023926CrossrefGoogle Scholar

  • [5] Dellaporta S.L., Wood.J. & Hicks J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21. http://dx.doi.org/10.1007/BF02712670CrossrefGoogle Scholar

  • [6] Duncan D.B. 1995. Multiple range and multiple F test. Biometrics 11: 1–42. http://dx.doi.org/10.2307/3001478CrossrefGoogle Scholar

  • [7] Elliott A.R., Campbell J.A., Dugdale B., Brettell R.I.S. & Grof C.P.L. 1999. Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep. 18: 707–714. http://dx.doi.org/10.1007/s002990050647CrossrefGoogle Scholar

  • [8] Heslop-Harrison J.S. & Schwarzacher T. 2007. Domestication, genomics and the future for banana. Ann. Bot. 100: 1073–1084. http://dx.doi.org/10.1093/aob/mcm191CrossrefWeb of ScienceGoogle Scholar

  • [9] Hunold R., Bronner R. & Hahne G. 1994. Early events in microprojectile bombardment: cell viability and particle location. Plant J. 5: 593–604. http://dx.doi.org/10.1046/j.1365-313X.1994.5040593.xCrossrefGoogle Scholar

  • [10] Janna O.A., Maziah M. & Parveez G.K.A. 2001. Potential selective agents for orchid transformation. Asia Pac. J. Mol. Biol. Biotechnol. 8: 85–93. Google Scholar

  • [11] Janna O.A., Maziah M., Parveez G.K.A. & Saleh K. 2006. Factors affecting delivery and transient expression of glucuronidase gene in Dendrobium Sonia protocorm-like-body. Afr. J. Biotechnol. 5: 88–94. Google Scholar

  • [12] Jordan M.C. 2000. Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep. 19: 1069–1075. http://dx.doi.org/10.1007/s002990000246CrossrefGoogle Scholar

  • [13] Kalendar R., Grob T., Regina M., Suoniemi A. & Schulman A. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98: 407–411. http://dx.doi.org/10.1007/s001220051124CrossrefGoogle Scholar

  • [14] Khalafalla M.M., Rahman S.M., El-Shemy H.A., Nakamoto Y., Wakasa K. & Ishimoto M. 2005. Optimisation of particle bombardment conditions by monitoring of transient sGFP (S65T) expression in transformed soybean. Breed Sci. 55: 257–263. http://dx.doi.org/10.1270/jsbbs.55.257CrossrefGoogle Scholar

  • [15] Mahdavi F., Sariah M., Puad M.P. & Maziah M. 2010. Micropropagation of some Malaysian banana and plantain (Musa sp.) cultivars using male flowers. Afr. J. Biotechnol. 9: 2360–2366. Google Scholar

  • [16] Maziah M., Sariah M. & Sreeamanan S. 2007. Transgenic banana Rastali (AAB) with β-1,3-glucanase gene for tolerance to Fusarium Wilt race 1 disease via Agrobacterium-mediated transformation system. Plant Pathol. J. 6: 271–282. Google Scholar

  • [17] Parveez G.K.A., Chowdhury M.K.U. & Saleh N.M. 1997. Physical parameters affecting transient GUS gene expression in oil palm (Elaeis guineensis Jacq.) using the biolistic device. Ind. Crops Prod. 6: 41–50. http://dx.doi.org/10.1016/S0926-6690(96)00204-XCrossrefGoogle Scholar

  • [18] Petrillo C.P., Carneiro N.P., Purcino A.A.C., Carvalho C.H.S, Alves J.D. & Carneiro A.A. 2008. Optimization of particle bombardment parameters for the genetic transformation of Brazilian maize inbred lines. Pesquisa Agropecuaria Brasileira 43: 371–378. http://dx.doi.org/10.1590/S0100-204X2008000300012CrossrefWeb of ScienceGoogle Scholar

  • [19] Rasco-Gaunt S., Riley A., Barcelo P. & Lazzeri P.A. 1999. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 19: 118–127. http://dx.doi.org/10.1007/s002990050721CrossrefGoogle Scholar

  • [20] Saker M.M., Abdallah S.S., Youssef S.S., Moursy H.A. & El-Sharkawy A.M. 2006. Development of transformation system for some Egyptian rice genotypes using particle bombardment. Am. Eurasian J. Agric. Environ. Sci. 1: 7–13. Google Scholar

  • [21] Sambrook J. & Russell D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 828 pp. Google Scholar

  • [22] Schopfer P., Taylor N.J., Carcamo R., Beachy R.N. & Fauquet C. 1997. Optimisation of parameters for particle bombardment of embryogenic suspension cultures of cassava (Manihot esculenta Crantz) using computer image analysis. Plant Cell Rep. 16: 526–530. http://dx.doi.org/10.1007/BF01142317CrossrefGoogle Scholar

  • [23] Sreeramanan S., Maziah M., Abdullah M.P., Sariah M. & Xavier R. 2006a. Transient expression of gusA and gfp gene in Agrobacterium-mediated banana transformation using single tiny meristematic bud. Asian J. Plant Sci. 5: 468–480. http://dx.doi.org/10.3923/ajps.2006.468.480CrossrefGoogle Scholar

  • [24] Sreeramanan S., Maziah M., Rosli N.M., Sariah M. & Xavier R. 2006b. Particle bombardment-mediated co-transformation of chitinase and β-1,3 glucanase genes in banana. Biotechnology 5: 203–216. http://dx.doi.org/10.3923/biotech.2006.203.216CrossrefGoogle Scholar

  • [25] Tadesse Y., Sagi L., Swennen R. & Jacobs M. 2003. Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via micro particle bombardment. Plant Cell Tissue Organ Cult. 75: 1–8. http://dx.doi.org/10.1023/A:1024664817800CrossrefGoogle Scholar

  • [26] Tripathi L. 2003. Genetic engineering for improvment of Musa production in Africa. Afr. J. Biotechnol. 2: 503–508. Google Scholar

  • [27] Tripathi L. 2005. Transgenic technologies for developing bacterial disease resistance in plants, pp. 200–220. In: Thangadurai D., Pullaiah T., Tripathi L. (eds), Vol. 3, Genetic Resources and Biotechnology, New Delhi, Regency. Google Scholar

  • [28] Tripathi L., Tripathi J.N. & Hughes J.D.A. 2005. Agrobacteriummediated transformation of plantain (Musa spp.) cultivar Agbagba. Afr. J. Biotechnol. 4: 1378–1383. Google Scholar

  • [29] Tripathi L., Tripathi J.N., Tenkouano A. & Bramel P. 2008. Banana and Plantain, pp. 77–107. In: Kole C. & Hall T. (eds), Vol 5, Transgenic Tropical and Subtropical Fruits and Nuts, Wiley-Blackwell. Google Scholar

  • [30] Yee N.C., Abdullah J.O., Mahmood M. & Basiron N. 2008. Cotransfer of gfp, CHS and hptII genes into Oncidium Sharry Baby PLB using the biolistic gun. Afr. J. Biotechnol. 7: 2605–2617. Google Scholar

  • [31] Zhang P., Legris G., Coulin P. & Puonti-Kaerlas J. 2000. Production of stably transformed cassava plants via particle bombardment. Plant Cell Rep. 19: 939–945. http://dx.doi.org/10.1007/s002990000224CrossrefGoogle Scholar

About the article

Published Online: 2014-08-19

Published in Print: 2014-07-01

Citation Information: Biologia, Volume 69, Issue 7, Pages 888–894, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-014-0391-7.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yujun Zhao, Yifeng Zhang, Ping Su, Jian Yang, Luqi Huang, and Wei Gao
Frontiers in Plant Science, 2018, Volume 8

Comments (0)

Please log in or register to comment.
Log in