Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 7

Issues

Cytotoxic and cytogenetic effects of α-copaene on rat neuron and N2a neuroblastoma cell lines

Hasan Turkez / Basak Togar / Abdulgani Tatar / Fatime Geyıkoglu / Ahmet Hacımuftuoglu
Published Online: 2014-08-19 | DOI: https://doi.org/10.2478/s11756-014-0393-5

Abstract

Alpha-copaene (α-COP), a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and antigenotoxic features. Its cytotoxic, cytogenetic and oxidative effects have not been investigated in neuron and N2a neuroblastoma (NB) cell cultures. Therefore, we aimed to describe in vitro: (i) cytotoxic properties by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenlytetrazolium bromide test; (ii) antioxidant/oxidant activity by total antioxidant capacity (TAC) and total oxidative status (TOS) analysis; and (iii) genotoxic damage potential by single cell gel electrophoresis — of α-COP in healthy neuron and N2a-NB cell cultures for the first time. Significant (P < 0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the concentration of 150 mg/L and in N2a-NB cells starting with 100 mg/L. In addition, 25 mg/L of α-COP treatment caused increase of TAC levels and α-COP treatments at higher doses led to increase of TOS levels in neuron N2a-NB cell cultures. Moreover, none of the tested concentrations of α-COP have shown a genotoxic effect on both cell lines. Our findings clearly demonstrate that α-COP exhibited mild cytotoxic effects on N2a-NB cell line. In conclusion, α-COP may have potential as an anticancer agent, which needs to be further studied.

Keywords: α-copaene; antiproliferative; neuroblastoma; single cell gel electrophoresis; total antioxidant capacity; total oxidative status

  • [1] Afoulous S., Ferhout H., Raoelison E.G., Valentin A., Moukarzel B., Couderc F. & Bouajila J. 2013. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food. Chem. Toxicol. 56: 352–362. http://dx.doi.org/10.1016/j.fct.2013.02.008CrossrefGoogle Scholar

  • [2] Agullo G., Gamet-Payrastre L. & Manenti S. 1997. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase c inhibition. Biochem. Pharmacol. 53: 1649–1657. http://dx.doi.org/10.1016/S0006-2952(97)82453-7CrossrefGoogle Scholar

  • [3] Al-Zubairi A.S., Abdul A.B. & Syam M.M. 2010. Evaluation of the genotoxicity of zerumbone in cultured human peripheral blood lymphocytes. Toxicol. In Vitro 24: 707–712. http://dx.doi.org/10.1016/j.tiv.2010.01.011CrossrefGoogle Scholar

  • [4] Aydin E., Turkez H. & Geyikoglu F. 2013. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia 68: 1004–1009. http://dx.doi.org/10.2478/s11756-013-0230-2CrossrefGoogle Scholar

  • [5] Ban J.Y., Jeon S.Y., Nguyen T.T., Bae K., Song K.S. & Seong Y.H. 2006. Neuroprotective effect of oxyresveratrol from smilacis chinae rhizome on amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 29: 2419–2424. CrossrefGoogle Scholar

  • [6] Bäckman U., Svensson A., Christofferson R.H. & Azarbayjani F. 2008. The bisphosphonate, zoledronic acid reduces experimental neuroblastoma growth by interfering with tumor angiogenesis. Anticancer Res. 28: 1551–1557. Google Scholar

  • [7] Best R.G. & McKenzie W.H. 1988. Variable sister-chromatid exchange response in human lymphocytes exposed in vitro to gossypol acetic acid. Mutat. Res. 206: 227–233. http://dx.doi.org/10.1016/0165-1218(88)90165-6CrossrefGoogle Scholar

  • [8] Brodeur G.M. 2003. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer. 3: 203–216. http://dx.doi.org/10.1038/nrc1014CrossrefGoogle Scholar

  • [9] Brusselmans K., Vrolix R., Verhoeven G. & Swinnen J.V. 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 280: 5636–5645. http://dx.doi.org/10.1074/jbc.M408177200CrossrefGoogle Scholar

  • [10] Carlson L.M., Rasmuson A., Idborg H., Segerström L., Jakobsson P.J., Sveinbjörnsson B. & Kogner P. 2013. Low-dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of neuroblastoma. Carcinogenesis 34: 1081–1088. http://dx.doi.org/10.1093/carcin/bgt009CrossrefGoogle Scholar

  • [11] Chavan M.J., Wakte P.S. & Shinde D.B. 2012. Analgesic and anti-inflammatory activities of the sesquiterpene fraction from Annona reticulata L. bark. Nat. Prod. Res. 26: 1515–1518. http://dx.doi.org/10.1080/14786419.2011.564583CrossrefGoogle Scholar

  • [12] Chen D., Daniel K.G., Chen M.S., Kuhn D.J., Landis-Piwowar K.R. & Dou Q.P. 2005. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69: 1421–1432. http://dx.doi.org/10.1016/j.bcp.2005.02.022CrossrefGoogle Scholar

  • [13] Chen Z.P., Schell J.B., Ho CT. & Chen KY. 1998. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. 129: 173–179. http://dx.doi.org/10.1016/S0304-3835(98)00108-6CrossrefGoogle Scholar

  • [14] Constantinou A., Mehta R., Runyan C., Rao K., Vaughan A. & Moon R. 1995. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J. Nat. Prod. 58: 217–225. http://dx.doi.org/10.1021/np50116a009CrossrefGoogle Scholar

  • [15] Cornero A., Acquaviva M., Fardin P., Versteeg R., Schramm A., Eva A., Bosco M.C., Blengio F., Barzaghi S. & Varesio L. 2012. Design of a multi-signature ensemble classifier predicting neuroblastoma patients’ outcome. BMC Bioinformatics 13(Suppl 4): S13. http://dx.doi.org/10.1186/1471-2105-13-S4-S13CrossrefGoogle Scholar

  • [16] Dauphin G., de Araujo P.C., Forget P., Leroy P., Rausin L. & Demarche M. 2013. Atypical clinical presentation of a neuroblastoma in an infant. Rev. Med. Liege 68: 56–60. Google Scholar

  • [17] de Peyster A. & Wang Y.Y. 1993. Genetic toxicity studies of gossypol. Mutat. Res. 297: 293–312. http://dx.doi.org/10.1016/0165-1110(93)90021-ECrossrefGoogle Scholar

  • [18] Di Sotto A., Mazzanti G., Carbone F., Hrelia P. & Maffei F. 2010. Inhibition by β-caryophyllene of ethyl methanesulfonateinduced clastogenicity in cultured human lymphocytes. Mutat. Res. 699: 23–28. http://dx.doi.org/10.1016/j.mrgentox.2010.04.008CrossrefGoogle Scholar

  • [19] Erel O. 2004. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 37: 112–119. http://dx.doi.org/10.1016/j.clinbiochem.2003.10.014CrossrefGoogle Scholar

  • [20] Erel O. 2005. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38: 1103–1011. http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008CrossrefGoogle Scholar

  • [21] Fiori J., Teti G., Gotti R., Mazzotti G. & Falconi M. 2011. Cytotoxic activity of guaiazulene on gingival fibroblasts and the influence of light exposure on guaiazulene-induced cell death. Toxicol. In Vitro 25: 64–72. http://dx.doi.org/10.1016/j.tiv.2010.09.008CrossrefGoogle Scholar

  • [22] Hemendinger R.A., Armstrong E.J 3rd, Persinski R., Todd J., Mougeot J.L., Volvovitz F. & Rosenfeld J. 2008. Huperzine A provides neuroprotection against several cell death inducers using in vitro model systems of motor neuron cell death. Neurotox. Res. 13: 49–61. http://dx.doi.org/10.1007/BF03033367CrossrefGoogle Scholar

  • [23] Hooff G.P., Peters I., Wood W.G., Müller W.E. & Eckert G.P. 2010. Modulation of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate in neuroblastoma sh-51-sy5yapp695 cells: impact on amyloid β-protein production. Mol. Neurobiol. 41: 341–350. http://dx.doi.org/10.1007/s12035-010-8117-5Google Scholar

  • [24] Kazi A., Wang Z., Kumar N., Falsetti S.C., Chan T.H. & Dou Q.P. 2004. Structure activity relationships of synthetic analogs of (−)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res. 24: 943–954. PubMedGoogle Scholar

  • [25] Lepley D.M., Li B., Birt D.F. & Pelling J.C. 1996. The chemopreventive flavonoid apigenin induces g2/m arrest in keratinocytes. Carcinogenesis 17: 2367–2375. http://dx.doi.org/10.1093/carcin/17.11.2367CrossrefGoogle Scholar

  • [26] Lewerenz V., Hanelt S., Nastevska C., El-Bahay C., Rouhrdanz E. & Kahl R. 2003. Antioxidants protect primary rat hepatocyte cultures against acetaminophen-induced DNA strand breaks but not against acetaminophen induced cytotoxicity. Toxicology 191: 179–187. http://dx.doi.org/10.1016/S0300-483X(03)00256-7CrossrefGoogle Scholar

  • [27] Lima R.M., Alvarez L.D., Costa M.F., Costa S.L., Clarencio J. & El-Bacha R.S. 2008. Cytotoxic effects of catechol to neuroblastoma N2a cells. Gen. Physiol. Biophys. 27: 306–314. PubMedGoogle Scholar

  • [28] Michaelis M., Kleinschmidt M.C., Barth S., Rothweiler F., Geiler J., Breitling R., Mayer B., Deubzer H., Witt O., Kreuter J., Doerr HW., Cinatl J. & Cinatl J. Jr. 2010. Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem. Pharmacol. 79: 130–136. http://dx.doi.org/10.1016/j.bcp.2009.08.013CrossrefGoogle Scholar

  • [29] Molina-Jasso D., Alvarez-González I. & Madrigal-Bujaidar E. 2009. Clastogenicity of β-caryophyllene in mouse. Biol. Pharm. Bull. 32: 520–522. CrossrefGoogle Scholar

  • [30] Nishida R., Shelly T.E., Whittier T.S. & Kaneshiro K.Y. 2000. α-Copaene, a potential rendezvous cue for the Mediterranean fruit fly, Ceratitis capitata? J. Chem. Ecol. 26: 87–100. http://dx.doi.org/10.1023/A:1005489411397CrossrefGoogle Scholar

  • [31] Parada-Turska J., Paduch R., Majdan M., Kandefer-Szerszen M. & Rzeski W. 2007. Antiproliferative activity of parthenolide against three human cancer cell lines and human umbilical vein endothelial cells. Pharmacol. Rep. 59: 233–237. Google Scholar

  • [32] Plaumann B., Fritsche M., Rimpler H., Brandner G. & Hess R.D. 1996. Flavonoids activate wild-type p53. Oncogene 13: 1605–1614. Google Scholar

  • [33] Poindessous V., Koeppel F., Raymond E., Cvitkovic E., Waters S.J. & Larsen A.K. 2003. Enhanced antitumor activity of irofulven in combination with 5-fluorouracil and cisplatin in human colon and ovarian carcinoma cells. Int. J. Oncol. 23: 1347–1355. Google Scholar

  • [34] Quintans Jde S., Soares B.M., Ferraz R.P., Oliveira A.C., da Silva T.B., Menezes L.R., Sampaio M.F., Prata A.P., Moraes M.O., Pessoa C., Antoniolli A.R., Costa E.V. & Bezerra D.P. 2013. Chemical constituents and anticancer effects of the essential oil from leaves of Xylopia laevigata. Planta Med. 79: 123–130. http://dx.doi.org/10.1055/s-0032-1328091CrossrefGoogle Scholar

  • [35] Shi C., Wu F., Yew D.T., Xu J. & Zhu Y. 2010. Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Apoptosis 15: 715–727. http://dx.doi.org/10.1007/s10495-010-0492-xGoogle Scholar

  • [36] Singh N.P., McCoy M.T., Tice R.R. & Schneider E.L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 175: 184–191. http://dx.doi.org/10.1016/0014-4827(88)90265-0CrossrefGoogle Scholar

  • [37] Sithranga Boopathy N. & Kathiresan K. 2010. Anticancer drugs from marine flora: an overview. J. Oncol. 2010: 214186. http://dx.doi.org/10.1155/2010/214186CrossrefGoogle Scholar

  • [38] Somwong P., Suttisri R. & Buakeaw A. 2013. New sesquiterpenes and phenolic compound from Ficus foveolata. Fitoterapia 85: 1–7. http://dx.doi.org/10.1016/j.fitote.2012.12.026CrossrefGoogle Scholar

  • [39] Stiller C.A. & Parkin D.M. 1992. International variations in the incidence of neuroblastoma. Int. J. Cancer. 52: 538–543. http://dx.doi.org/10.1002/ijc.2910520407CrossrefGoogle Scholar

  • [40] Svensson K. & Larsson C. 2003. A protein kinase Cβ inhibitor attenuates multidrug resistance of neuroblastoma cells. BMC Cancer 3: 10. http://dx.doi.org/10.1186/1471-2407-3-10CrossrefGoogle Scholar

  • [41] Tsuda S., Kosaka Y., Murakami M., Matsuo H., Matsusaka N., Taniguchi K. & Sasaki Y.F. 1998. Detection of nivalenol genotoxicity in cultured cells and multiple mouse organs by the alkaline single-cell gel electrophoresis assay. Mutat. Res. 415: 191–200. http://dx.doi.org/10.1016/S1383-5718(98)00068-0CrossrefGoogle Scholar

  • [42] Turkez H., Celik K. & Togar B. 2013. Effects of α-copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology (DOI: 10.1007/s10616-013-9611-1). CrossrefGoogle Scholar

  • [43] Turkez H., Sozio P., Geyikoglu F., Tatar A., Hacimuftuoglu A. & Di Stefano A. 2014a. Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cell. Mol. Neurobiol. 34: 101–111. http://dx.doi.org/10.1007/s10571-013-9991-yCrossrefGoogle Scholar

  • [44] Turkez H., Togar B., Di Stefano A., Taspinar N. & Sozio P. 2014b. Protective effects of cyclosativene on H2O2-induced injury in cultured rat primary cerebral cortex cells. Cytotechnology (DOI: 10.1007/s10616-013-9685-9). CrossrefGoogle Scholar

  • [45] Turkez H., Togar B. & Tatar A. 2014c. Tricyclic sesquiterpene α-copaene prevents H2O2-induced neurotoxicity. J. Intercult. Ethnopharmacol. 3: 21–28. http://dx.doi.org/10.5455/jice.20131229104710CrossrefGoogle Scholar

  • [46] Veiga Junior V.F., Rosas E.C., Carvalho M.V., Henriques M.G. & Pinto A.C. 2007. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne — a comparative study. J. Ethnopharmacol. 112: 248–254. http://dx.doi.org/10.1016/j.jep.2007.03.005CrossrefGoogle Scholar

  • [47] Vinholes J., Rudnitskaya A., Goncalves P., Martel F., Coimbra M.A. & Rocha SM. 2013. Hepatoprotection of sesquiterpenoids: a quantitative structure-activity relationship (QSAR) approach. Food Chem. 146: 78–84. http://dx.doi.org/10.1016/j.foodchem.2013.09.039CrossrefGoogle Scholar

  • [48] Wang Y.L., Li R.P., Guo M.L., Zhang G., Zhang N. & Ma Y.L. 2009. Bakkenolides from Petasites tricholobus and their neuroprotective effects related to antioxidant activities. Planta Med. 75: 230–235. http://dx.doi.org/10.1055/s-0028-1088377CrossrefGoogle Scholar

  • [49] Wassberg E., Hedborg F., Sköldenberg E., Stridsberg M. & Christofferson R. 1999. Inhibition of angiogenesis induces chromaffin differentiation and apoptosis in neuroblastoma. Am. J. Pathol. 154: 395–403. http://dx.doi.org/10.1016/S0002-9440(10)65286-8CrossrefGoogle Scholar

  • [50] Wiley J.C., Meabon J.S., Frankowski H., Smith E.A., Schecterson L.C., Bothwell M. & Ladiges W.C. 2010. Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of app proteolysis and prevents apoptosis in neuronal cells. Plos One 5: e9135. http://dx.doi.org/10.1371/journal.pone.0009135CrossrefGoogle Scholar

  • [51] Zhan Y.H., Liu J., Qu X.J., Hou K.Z., Wang K.F., Liu Y.P. & Wu B. 2012. β-Elemene induces apoptosis in human renalcell carcinoma 786–0 cells through inhibition of MAPK/ERK and PI3K/Akt/mTOR signalling pathways. Asian Pac. J. Cancer Prev. 13: 2739–2744. http://dx.doi.org/10.7314/APJCP.2012.13.6.2739CrossrefGoogle Scholar

About the article

Published Online: 2014-08-19

Published in Print: 2014-07-01


Citation Information: Biologia, Volume 69, Issue 7, Pages 936–942, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-014-0393-5.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wen-Nee Tan, Zi-Hui Tan, Nurul Izzati Zulkifli, Nik Nur Syazni Nik Mohamed Kamal, Nur Amiera Syuhada Rozman, Woei-Yenn Tong, Chean-Ring Leong, and Jun-Wei Lim
Natural Product Research, 2019, Page 1
[2]
Ogochukwu Izuegbuna, Gloria Otunola, Graeme Bradley, and Calogero Caruso
PLOS ONE, 2019, Volume 14, Number 1, Page e0209682
[3]
Ramasamy Karthikeyan, Govindasamy Kanimozhi, Nirmal R. Madahavan, Balupillai Agilan, Muthusamy Ganesan, Nagarajan Rajendra Prasad, and Pierson Rathinaraj
Life Sciences, 2018
[4]
Mirza Md. Abukawsar, Md. Moshfekus Saleh-e-In, Md. Aminul Ahsan, Md. Matiur Rahim, Md. Nurul Huda Bhuiyan, Sudhangshu Kumar Roy, Apu Ghosh, and Shamsun Naher
Journal of Food Biochemistry, 2018, Page e12590
[6]
Lixia Li, Tingting Fu, Qiang Wang, Yuanfeng Zou, Chao Huang, Zhongqiong Yin, Jiao Yang, Yang Liu, Dongmei Feng, and Xin Feng
Journal of Essential Oil Bearing Plants, 2018, Volume 21, Number 2, Page 476
[7]
Maryam Zahin, Mohammad Shavez Khan, Faizan Abul Qais, Hussein Hasan Abulreesh, and Iqbal Ahmad
Drug and Chemical Toxicology, 2018, Page 1
[8]
TOKTAM MEMARIANI, TOKTAM HOSSEINI, HOSSEIN KAMALI, AMENEH MOHAMMADI, MARYAM GHORBANI, ABDOREZA SHAKERI, DEMETRIOS A. SPANDIDOS, ARISTIDIS M. TSATSAKIS, and SHABNAM SHAHSAVAND
Oncology Letters, 2016, Volume 11, Number 2, Page 1353
[9]
Abdulkabir Oladele Oladimeji, Oluwatoyin Babatunde, Rukayat Titilayo Musa, Fausat Adeola M'civer, Abdulazeez Tunbosun Lawal, and Isiaka Ajani Ogunwande
Asian Pacific Journal of Tropical Disease, 2016, Volume 6, Number 5, Page 372
[10]
Arslan Masood Peerzada, Hafiz Haider Ali, Muhammad Naeem, Muhammad Latif, Asad Hussain Bukhari, and Asif Tanveer
Journal of Ethnopharmacology, 2015, Volume 174, Page 540

Comments (0)

Please log in or register to comment.
Log in