Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 69, Issue 8


Overexpression of DnWRKY11 enhanced salt and drought stress tolerance of transgenic tobacco

Xiang-Bin Xu / Yuan-Yuan Pan / Chun-Ling Wang / Qi-Cai Ying / Hong-Miao Song / Hui-Zhong Wang
Published Online: 2014-08-19 | DOI: https://doi.org/10.2478/s11756-014-0398-0


Dendrobium seedlings showed low survival rate when they were transferred from in vitro conditions to greenhouse or field environment. One of the major reasons is their low tolerance to environmental changes. WRKY transcription factors are one of the largest families of transcriptional regulators in plants. They are involved in various biotic and abiotic stress responses. One DnWRKY11 gene was isolated from Dendrobium nobile. To explore the function of DnWRKY11 in Dendrobium defense responses to abiotic stress, it was overexpressed in tobacco. Under salt and drought stresses, the DnWRKY11 transgenic tobacco showed higher germination rate, longer root length, higher fresh weight, higher activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and lower content of malonidialdehyde (MDA) than the wild type. These results proved the important roles of DnWRKY11 in plant response to drought and salt stresses, and provided a potential gene for improving environmental stress tolerance of Dendrobium seedlings.

Keywords: Dendrobium nobile; abiotic stress; functional identification; WRKY

  • [1] Asada K. 1992. Ascorbate peroxidase: A hydrogen peroxidescavenging enzyme in plants. Plant Physiol. 85: 235–241. http://dx.doi.org/10.1111/j.1399-3054.1992.tb04728.xCrossrefGoogle Scholar

  • [2] Borsani O., Valpuesta V. & Botella M.A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126: 1024–1030. http://dx.doi.org/10.1104/pp.126.3.1024CrossrefGoogle Scholar

  • [3] Chen L.G., Zhang L.P. & Yu D.Q. 2010. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol. Plant-Microbe Interact. 23: 558–565. http://dx.doi.org/10.1094/MPMI-23-5-0558Web of ScienceCrossrefGoogle Scholar

  • [4] Dionisio-Sese M.L. & Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1–9. http://dx.doi.org/10.1016/S0168-9452(98)00025-9CrossrefGoogle Scholar

  • [5] Foyer C.H. & Noctor G. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146: 359–388 http://dx.doi.org/10.1046/j.1469-8137.2000.00667.xCrossrefGoogle Scholar

  • [6] Hernandez J.A., Ferrer M.A., Jimenez A., Barcelo A.R. & Sevilla F. 2001. Antioxidant systems and O 2−−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127: 827–831. Google Scholar

  • [7] Jiang W. & Yu D. 2009. Arabidopsis WRKY2 transcription factor mediates seed germination and post-germination arrest of development by abscisic acid. BMC Plant Biol. 22: 994–996. Google Scholar

  • [8] Jiang Y. & Deyholos M. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol. Biol. 69: 91–105. http://dx.doi.org/10.1007/s11103-008-9408-3CrossrefGoogle Scholar

  • [9] Lagace M. & Matton D.P. 2004. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219: 185–189. http://dx.doi.org/10.1007/s00425-004-1253-2CrossrefGoogle Scholar

  • [10] Li H., Xu Y., Xiao Y., Zhu Z.G., Xie X.Q., Zhao H.Q. & Wang Y.J. 2010. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232: 1325–1337. http://dx.doi.org/10.1007/s00425-010-1258-yWeb of ScienceCrossrefGoogle Scholar

  • [11] Li S.J., Fu Q.T., Chen L.G., Huang W.D. & Yu D.Q. 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233: 1237–1252. http://dx.doi.org/10.1007/s00425-011-1375-2Web of ScienceCrossrefGoogle Scholar

  • [12] Liu J.J. & Ekramoddoullah A.K. 2009. Identification and characterization of the WRKY transcription factor family in Pinus monticola. Genome 52: 77–88. http://dx.doi.org/10.1139/G08-106Web of ScienceCrossrefGoogle Scholar

  • [13] Liu Q.L., Zhong M., Li S., Pan Y.Z., Jiang B.B., Jia Y. & Zhang H.Q. 2013. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress. Plant Physiol. Biochem. 69: 27–33. Web of ScienceCrossrefGoogle Scholar

  • [14] Mangelsen E., Kilian J., Berendzen K.W., Kolukisaoglu U.H., Harter K., Jansson C. & Wanke D. 2008. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9: 194. http://dx.doi.org/10.1186/1471-2164-9-194Web of ScienceCrossrefGoogle Scholar

  • [15] Miao Y. & Zentgraf U. 2010. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J. 63: 179–188. http://dx.doi.org/10.1111/j.1365-313X.2010.04233.xCrossrefGoogle Scholar

  • [16] Pandey S.P. & Somssich I.E. 2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150: 1648–1655. http://dx.doi.org/10.1104/pp.109.138990CrossrefGoogle Scholar

  • [17] Qiu Y.P. & Yu D.Q. 2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ. Exp. Bot. 65: 35–47. http://dx.doi.org/10.1016/j.envexpbot.2008.07.002CrossrefWeb of ScienceGoogle Scholar

  • [18] Ren X.Z., Chen Z.Z., Liu Y., Zhang H., Zhang M., Liu Q., Hong X., Zhu J.K. & Gong Z. 2010. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 63: 417–429. http://dx.doi.org/10.1111/j.1365-313X.2010.04248.xCrossrefGoogle Scholar

  • [19] Rushton P.J., Somssich I.E., Ringler P. & Shen Q.J. 2010. WRKY transcription factors. Trends Plant Sci. 15: 247–258. http://dx.doi.org/10.1016/j.tplants.2010.02.006CrossrefWeb of ScienceGoogle Scholar

  • [20] Rushton P.J., Macdonald H., Huttly A.K., Lazarus C.M. & Hooley. R. 1995. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol. Biol. 29: 691–702. http://dx.doi.org/10.1007/BF00041160CrossrefGoogle Scholar

  • [21] Song H.M., Fan P.X. & Li Y.X. 2009. Overexpression of AtHsp90 alters response to oxidative stress in transgenic Arabidopsis. Plant Mol. Biol. Rep. 27: 342–349. http://dx.doi.org/10.1007/s11105-009-0091-6CrossrefGoogle Scholar

  • [22] Song Y., Ai C.R., Jing S.J. & Yu D.Q. 2010. Research progress on function analysis of rice WRKY gene. Rice Sci. 17: 60–72. http://dx.doi.org/10.1016/S1672-6308(08)60105-5CrossrefGoogle Scholar

  • [23] Song Y., Chen L.G., Zhang L.P. & Yu D.Q. 2010. Overexpression of OsWRKY72 gene interferes in the ABA signal and auxin transport pathway of Arabidopsis. J. Biosci. 35: 459–471. http://dx.doi.org/10.1007/s12038-010-0051-1CrossrefGoogle Scholar

  • [24] Wang H.Z., Hu B., Chen G.P., Shi N.N., Zhao Y., Ying Q.C. & Liu J.J. 2008. Application of Arabidopsis AGAMOUS second intron for the engineered ablation of flower development in transgenic tobacco. Plant Cell Rep. 27: 251–259. http://dx.doi.org/10.1007/s00299-007-0450-4CrossrefGoogle Scholar

  • [25] Wu X., Shiroto Y., Kishitani S., Ito Y. & Toriyama K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep. 28: 21–30. http://dx.doi.org/10.1007/s00299-008-0614-xCrossrefGoogle Scholar

  • [26] Xie Z., Zhang Z.L., Zou X., Yang G., Komatsu S. & Shen Q.J. 2006. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J. 46: 231–242. http://dx.doi.org/10.1111/j.1365-313X.2006.02694.xCrossrefGoogle Scholar

  • [27] Xie Z., Zhang Z.L., Zou X., Huang J., Ruas P., Thompson D. & Shen Q.J. 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 137: 176–189. http://dx.doi.org/10.1104/pp.104.054312CrossrefGoogle Scholar

  • [28] Zhang Z.L., Shin M., Zou X.L., Huang J.Z., Ho T.H. & Shen Q.J. 2009. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. Plant Mol. Biol. 70: 139–151. http://dx.doi.org/10.1007/s11103-009-9463-4Web of ScienceCrossrefGoogle Scholar

  • [29] Zhang Z.L., Xie Z., Zou X., Casaretto J., Ho T.H. & Shen Q.J. 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134: 1500–1513. http://dx.doi.org/10.1104/pp.103.034967CrossrefGoogle Scholar

  • [30] Zhou Q.Y., Tian A.G., Zou H.F., Xie Z.M., Lei G., Huang J., Wang C.M., Wang H.W., Zhang J.S. & Chen S.Y. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotech. J. 6: 486–503. http://dx.doi.org/10.1111/j.1467-7652.2008.00336.xCrossrefGoogle Scholar

About the article

Published Online: 2014-08-19

Published in Print: 2014-08-01

Citation Information: Biologia, Volume 69, Issue 8, Pages 994–1000, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-014-0398-0.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qian Zhao, Ling He, Bei Wang, Qing-Lin Liu, Yuan-Zhi Pan, Fan Zhang, Bei-Bei Jiang, Lei Zhang, Guang-Li Liu, and Yin Jia
DNA and Cell Biology, 2018

Comments (0)

Please log in or register to comment.
Log in