Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 69, Issue 8

Issues

Long-term monitoring of an invasion process: the case of an isolated small wetland on a Mediterranean Island, second stage: toward a complete restoration

Bruno Foggi
  • Department of Biology, Lab. of Plant Systematics and Phytogeography, University of Florence, Via La Pira, 4, I-50121, Firenze, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renato Benesperi
  • Department of Biology, Lab. of Plant Systematics and Phytogeography, University of Florence, Via La Pira, 4, I-50121, Firenze, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniele Viciani
  • Department of Biology, Lab. of Plant Systematics and Phytogeography, University of Florence, Via La Pira, 4, I-50121, Firenze, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michele Giunti / Lorenzo Lastrucci
  • Department of Biology, Lab. of Plant Systematics and Phytogeography, University of Florence, Via La Pira, 4, I-50121, Firenze, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-19 | DOI: https://doi.org/10.2478/s11756-014-0400-x

Abstract

In the present article, the results of the first-stage of monitoring, following restoration works on a small Mediterranean wetland (Lake Stagnone, Capraia Island, Tuscan Archipelago), are reported. The recent spread of Typha and Phragmites in the lake changed diversity and composition of the plant communities. Nine years after their first monitoring (2009), a rarefaction of hydrophytes and small helophytes of conservation interest was detected. In 2010, the restoration started with the aim to remove (or at least reduce) the populations of the large, expansive helophytes. In 2012, the first post-actions monitoring were carried out using the same methods as previously, analysing the plant presence/absence and their cover value recorded in the same 15 plots selected in 2000 and 2009. The rise and fall of the populations of the various flora and vegetation types during this invasion process and the following restoration were statistically analysed. One year following the restoration, some recovery (replacement) had occurred of autochthonous hydrophytes and small helophytes. Many of these species are of conservation interest. Some aquatic plants, present on the site until the more or less recent past, were once more recorded. Given the rapid recovery of populations of many autochthonous species, the results are reasonably encouraging, rendering planned reintroductions unnecessary at the moment. On the other hand, because of the short time elapsed since restoration, the current community structure cannot in any way be considered an “equilibrium” one. Continued and regular monitoring is required to allow the reestablishment of the large expansive helophytes populations.

Keywords: conservation; hydrophytes; NMDS; plant diversity; SDR

  • [1] Acreman M. 2000. Wetlands and Hydrology. Conservation of Mediterranean Wetlands 10, 109 pp. Google Scholar

  • [2] Arrigoni P.V. 1996. A classification of plant growth forms applicable to the floras and vegetation types of Italy. Webbia 50: 193–203. http://dx.doi.org/10.1080/00837792.1996.10670600CrossrefGoogle Scholar

  • [3] Bazzichelli G. & Abdelahad N. 2009. Alghe d’acqua dolce d’Italia. Flora analitica delle Caroficee. Ministero dell’Ambiente/DPN/Università di Roma La Sapienza, Roma. Google Scholar

  • [4] Bedford B.L., Leopold D.J. & Gibbs J.P. 2001. Wetlands Ecosystems. Encyclopedia of Biodiversity 5: 781–804. http://dx.doi.org/10.1006/rwbd.1999.0346CrossrefGoogle Scholar

  • [5] Béguinot A. & Formiggini L. 1908. Ulteriori osservazioni sulle Caracee vicarianti della flora italiana. Bull. Soc. Bot. Ital. 4-5-6: 78–81. Google Scholar

  • [6] Bímová K., Mandák B. & Kašparová I. 2004. How does Reynoutria invasion fit the various theories of invasibility? J. Veg Sci. 15: 495–504. Google Scholar

  • [7] Boers A.M., Frieswik C.B., Verhoeven J.T.A. & Zedler J.B. 2006. Contrasting Approaches to the restoration of diverse vegetation in herbaceous wetlands. In: Robbink R., Beltaman B., Verhoeven J.T.A. & Whigam D.F. (eds), Wetlands: Functioning, Biodiversity Conservation and Restoration. Springer-Verlag, Berlin Heidelberg. Ecol. Stud. 191: 225–246. Google Scholar

  • [8] Bonis A. & Grillas P. 2002. Deposition, germination and spatiotemporal patterns of charophyte propagule banks: a review. Aquat. Bot. 72: 235–248. http://dx.doi.org/10.1016/S0304-3770(01)00203-0CrossrefGoogle Scholar

  • [9] Bowles M. & Jones M. 2006. Trends of change in composition and structure of Chicago Region Wetland Vegetation. Chicago Wilderness J. 4: 25–34. Google Scholar

  • [10] Braun-Blanquet J. 1932. Plant Sociology. Mac Graw Hill Book Company, New York. Google Scholar

  • [11] Bulgarini F., Calvario E., Fraticelli F., Petretti F. & Sarrocco S. (eds) 1998. Libro Rosso degli animali d’Italia. Vertebrati. WWF Italia, Roma. Google Scholar

  • [12] Carta A., Bedini G., Foggi B. & Prober, R.J. 2012. Laboratory germination and seed bank storage of Ranunculus peltatus subsp. baudotii seeds from the Tuscan Archipelago. Seed Sci. & Technol. 40: 11–20. Google Scholar

  • [13] Conti F., Abbate G., Alessandrini A. & Blasi C. (eds) 2005. An annotated checklist of the italian vascular flora. Palombi Editori. Roma. Google Scholar

  • [14] Conti F., Alessandrini A., Bacchetta G., Banfi E., Barberis G., Bartolucci F., Bernardo L., Bonacquisti S., Bouvet D., Bovio M., Brusa G., Del Guacchio E., Foggi B., Frattini S., Galasso G., Gallo L., Gangale C., Gottschlich G., Grunanger P., Gubellini L., Iiriti G., Lucarini D., Marchetti D., Moraldo B., Peruzzi L., Poldini L., Prosser F., Raffaelli M., Santangelo A., Scassellati E., Scortegagna S., Selvi F., Soldano A., Tinti D., Ubaldi D., Uzunov D. & Vidali M. 2007. Integrazioni alla checklist della flora vascolare italiana. Natura Vicentina 10 (2006): 5–74. Google Scholar

  • [15] Conti A., Manzi F. & F. Pedrotti F. 1997. Liste rosse regionali delle piante d’Italia. WWF, Società Botanica Italiana, Camerino. Google Scholar

  • [16] Davis J.A & Froend R. 1999. Loss and degradation of wetlands in southwestern Australia: underlying causes, consequences and solutions. Wetl. Ecol. Manag. 7: 13–23. Google Scholar

  • [17] De Meester L., Decklerck S., Stoks R., Louette G., Van de Meutter F., De Bie T., Michels E. & Brendonck L. 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv. 15: 715–725. http://dx.doi.org/10.1002/aqc.748CrossrefGoogle Scholar

  • [18] Den Hartog C. & Segal S. 1964. A new classification of the waterplant communities. Acta Bot. Neer. 13: 367–393. http://dx.doi.org/10.1111/j.1438-8677.1964.tb00163.xCrossrefGoogle Scholar

  • [19] Denny P. 1994. Biodiversity and wetlands. Wet. Ecol. Manag. 3: 55–61. Google Scholar

  • [20] Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.I., Knowler D.J., Leveque C., Naiman R.J., Prieur-Richard A.H., Soto D., Stiassny M.L.J. & Sullivan C.A. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81: 163–182. http://dx.doi.org/10.1017/S1464793105006950CrossrefGoogle Scholar

  • [21] Dufrêne M. & Legendre P. 1997. Species assembly and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366. Google Scholar

  • [22] Ehrenfeld J.G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503–523. http://dx.doi.org/10.1007/s10021-002-0151-3CrossrefGoogle Scholar

  • [23] Foggi B. & Grigioni A. 1999. Contributo alla conoscenza della vegetazione dell’Isola di Capraia (Arcipelago Toscano). Parlatorea 3: 5–33. Google Scholar

  • [24] Foggi B., Lastrucci L., Viciani D., Brunialti G. & Benesperi R. 2011. Long-term monitoring of an invasion process: the case of an isolated small wetland on a Mediterranean Island. Biologia 66: 638–644. http://dx.doi.org/10.2478/s11756-011-0057-7CrossrefGoogle Scholar

  • [25] Gardner S.C. & Grue C.E. 1996. Effects of Rodeo® and Garlon® 3A on nontarget wetland species in central Washington. Environ. Toxicol. Chem. 15: 441–451. http://dx.doi.org/10.1002/etc.5620150406CrossrefGoogle Scholar

  • [26] Giraudoux P. 2013. pgirmess: data analysis in ecology. R package version 1.5.8. Available at http://perso.orange.fr/giraudoux (accessed 30.09.2013). Google Scholar

  • [27] Green E.K. & Galatowitsch S.M. 2001. Differences in wetland plant community establishment with additions of nitrate-N and invasive species (Phalaris arundinacea and Typha × glauca). Can. J. Bot. 79: 170–78. CrossrefGoogle Scholar

  • [28] Hobbs R.J. & Harris J.A. 2001. Restoration Ecology: Repairing the Earth’s Ecosystems in the New Millenium, Restoration Ecology 9: 239–246. http://dx.doi.org/10.1046/j.1526-100x.2001.009002239.xCrossrefGoogle Scholar

  • [29] Hobbs R.J. & Norton D.A. 1996. Towards a Conceptual Framework for Restoration Ecology. Restoration Ecology 4: 92–110. http://dx.doi.org/10.1111/j.1526-100X.1996.tb00112.xCrossrefGoogle Scholar

  • [30] Lastrucci L., Foggi B., Mantarano N., Ferretti G., Calamassi R. & Grigioni A. 2010. La vegetazione del laghetto “Lo Stagnone” (Isola di Capraia, Toscana). Atti Soc. Tosc. Sci. Nat., Mem. Ser. B 116(2009): 17–25. Google Scholar

  • [31] Lenssen J.P.M., Menting F.B.J., Van der Putten W.H. & Blom C.W.P.M. 2000. Variation in species composition and species richness within Phragmites australis dominated riparian zones. Plant Ecol. 147: 137–146. http://dx.doi.org/10.1023/A:1009869109179CrossrefGoogle Scholar

  • [32] Lorens B. 2006. Regeneration of “Echo” Ponds’ vegetation after their hydrotechnical reconstruction. Teka Kom. Ochr. Kszt. Srod. Przyr. 3: 122–128. Google Scholar

  • [33] Mann R.M. & Bidwell J.R. 1999. The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch. Environ. Contam. Toxicol. 36: 193–199. http://dx.doi.org/10.1007/s002449900460CrossrefGoogle Scholar

  • [34] Marrs R.H., Williams C.T., Frost A.J. & Plant R.A. 1989. Assessment of the effects of herbicide spray drift on a range of plant species of conservation interest. Environ. Pollut. 59: 71–86. http://dx.doi.org/10.1016/0269-7491(89)90022-5CrossrefGoogle Scholar

  • [35] Médail F., Michaud H., Molina J., Paradis G. & Loisel R. 1998. Conservation de la flore et de la végétation des mares temporaries dulçaquicoles et oligotrophes de France méditerranéenne. Ecol. Med. 24: 119–134. Google Scholar

  • [36] Messersmith C.G., Christianson K.M. & Thorsness K.B. 1992. Influence of glyphosate rate, application date, and spray volume on cattail control. N. Dak. Farm. Res. 49(5): 27–28. Google Scholar

  • [37] Moris J. & De Notaris J. 1839. Florula Caprariae. Mem. R. Accad. Sci. Torino, ser. 2 2: 1–244. Google Scholar

  • [38] Mozdzer T.J., Hutto C.J., Clarke P.A. & Field D.P. 2008. Efficacy of Imazapyr and Glyphosate in the control of non-native Phragmites australis. Restor. Ecol. 16: 221–224. http://dx.doi.org/10.1111/j.1526-100X.2008.00386.xCrossrefGoogle Scholar

  • [39] Oksanen J., Blanchet G.F., Kindt R. Legendre P., Minchin P.R., O’hara R.B., Simpson G.L. Solymos P., Stevens M.H.M. & Wagner H. 2013. vegan: community ecology package. R package version 2.0–9. http://vegan.r-forge.r-project.org/ (accessed 01.10.2013). Google Scholar

  • [40] Podani J. 2001. SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User’s Manual, Scientia, Budapest. Google Scholar

  • [41] Podani J. & Schmera D. 2011. A new conceptual and methodological framework for exploring and explaining pattern in presence — absence data. Oikos 120: 1625–1638. http://dx.doi.org/10.1111/j.1600-0706.2011.19451.xCrossrefGoogle Scholar

  • [42] Pyšek P., Richardson D.M., Rejmánek M., Webster G.L., Williamson M. & Kirschner J. 2004. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53: 131–143 http://dx.doi.org/10.2307/4135498CrossrefGoogle Scholar

  • [43] R Development Core Team 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/ (accessed 17.06.2013). Google Scholar

  • [44] Relyea R.A. 2005. The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol. Appl. 15: 1118–1124. http://dx.doi.org/10.1890/04-1291CrossrefGoogle Scholar

  • [45] Richardson D.M., Pyšek P., Rejmánek M., Barbour M.G., Panetta F.D. & West C.J. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity Distrib. 6: 93–107. http://dx.doi.org/10.1046/j.1472-4642.2000.00083.xCrossrefGoogle Scholar

  • [46] Roberts D.W. 2012. labdsv: ordination and multivariate analysis for ecology. R package version 1.5–0. http://CRAN.R-project.org/package=labdsv (accessed 17.06.2013). Google Scholar

  • [47] Siegel S. & Castellan N.J. 1988. Nonparametric statistics for the behavioral sciences (2nd Ed.). McGraw-Hill, New York. Google Scholar

  • [48] Tighe M., Reid N., Wilson B. & Briggs S.V. 2009. Invasive native scrub and soil condition in semi-arid south-eastern Australia. Agr. Ecosyst. Environ. 132: 212–222 http://dx.doi.org/10.1016/j.agee.2009.04.001CrossrefGoogle Scholar

  • [49] Tulbure M.G., Johnston C.A. & Auger D.L. 2007. Rapid Invasion of a Great Lakes Coastal Wetlands by Non-Native Phragmites australis and Typha. Journal of Great Lakes Research 33(Spec. Iss. 3): 269–279. http://dx.doi.org/10.3394/0380-1330(2007)33[269:RIOAGL]2.0.CO;2CrossrefGoogle Scholar

  • [50] Zedler J.B. & Kercher S. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists and outcomes. Crit. Rev. Plant Sci. 23: 431–452. http://dx.doi.org/10.1080/07352680490514673CrossrefGoogle Scholar

  • [51] Valéry L., Bouchard V. & Lefeuvre J.C. 2004. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands 24: 268–276. http://dx.doi.org/10.1672/0277-5212(2004)024[0268:IOTINS]2.0.CO;2CrossrefGoogle Scholar

  • [52] Whyte R.S., Texel-Kroll D., Klarer D.M., Shields R. & Francko D.A. 2008. The invasion and spread of Phragmites australis during a period of low water in a Lake Erie Coastal Wetland. J. Coastal Res. 55: 111–120. http://dx.doi.org/10.2112/SI55-19.1CrossrefGoogle Scholar

  • [53] Wild J., Neuhauslová Z. & Sofron J. 2004. Changes of plant species composition in the Šumava spruce forests, SW Bohemia, since the 1970s. Forest Ecol. Manag. 187: 117–132. http://dx.doi.org/10.1016/S0378-1127(03)00310-4Google Scholar

About the article

Published Online: 2014-08-19

Published in Print: 2014-08-01


Citation Information: Biologia, Volume 69, Issue 8, Pages 977–985, ISSN (Online) 1336-9563, DOI: https://doi.org/10.2478/s11756-014-0400-x.

Export Citation

© 2014 Slovak Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lorenzo Lastrucci, Daniela Gigante, Orlando Vaselli, Barbara Nisi, Daniele Viciani, Lara Reale, Andrea Coppi, Valeria Fazzi, Gianmaria Bonari, and Claudia Angiolini
Annales de Limnologie - International Journal of Limnology, 2016, Volume 52, Page 365
[2]
Veronika Gergócs and Levente Hufnagel
International Journal of Acarology, 2015, Volume 41, Number 7, Page 574

Comments (0)

Please log in or register to comment.
Log in