Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 70, Issue 10 (Oct 2015)

Issues

Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities

Agbaje Lateef / Sunday A. Ojo
  • Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abiola S. Akinwale
  • Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luqmon Azeez / Evariste B. Gueguim-Kana
  • Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lorika S. Beukes
  • Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-08 | DOI: https://doi.org/10.1515/biolog-2015-0164

Abstract

The cell-free extract of Bacillus safensis LAU 13 strain (GenBank accession No: KJ461434) was used for green biosynthesis of silver nanoparticles (Ag-NPs). Characterization of Ag-NPs was carried out using UV-VIS spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. Evaluation of synthesized Ag-NPs as antimicrobial agents was done using multi-drug resistant clinical isolates as well as their synergistic effects when combined with some selected antibiotics. Furthermore, potential of Ag-NPs as antimicrobial additives in paint was demonstrated. The Ag-NPs have maximum absorbance at 419 nm, with peaks at 3308, 2359, 1636, and 422 cm−1, indicating that proteins were the capping and stabilisation molecules in the synthesis of Ag-NPs. The particles were spherical shaped having size of 5-95 nm, with silver as the prominent metal from the energy dispersive X-ray analysis, while selected area electron diffraction pattern agrees well with the crystalline nature and face-centred cubic phase of Ag-NPs. Inhibition of Staphylococcus aureus, Escherichia coli, Klebsiella granulomatis and Pseudomonas aeruginosa was achieved at 100 μg/mL. Improvement of activities of augmentin, ofloxacin and cefixime to the tune of 7.4-142.9% was achieved in synergistic study, while total inhibitions of P. aeruginosa, S. aureus, Aspergillus flavus and Aspergillus fumigatus were achieved in Ag-NPs-paint admixture. The Ag-NPs showed potent antioxidant and larvicidal activities with IC50 and LC50 of 15.99 and 42.19 μg/mL, respectively. The present study demonstrated that the biosynthesized Ag-NPs have potent biological activities, which can find applications in diverse areas. The report adds to the growing biotechnological relevance of B. safensis.

Keywords: Bacillus safensis; silver nanoparticles; antimicrobial activity; multi-drug resistance; paint; antioxidant; larvicidal activity

References

  • Adewoye S.O. & Lateef A. 2004. Assessment of the microbiological quality of Clarias gariepinus exposed to an industrial effluent in Nigeria. Environmentalist 24: 249-254.CrossrefGoogle Scholar

  • Andrews J.M. 2005. BSAC standardized disc susceptibility testing method (version 4). J. Antimicrob. Chemother. 56: 60-76.CrossrefGoogle Scholar

  • Bhakya S., Muthukrishnan S., Sukumaran M. & Muthukumar M. 2015. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0473-z.CrossrefGoogle Scholar

  • Bhat R., Desphande R., Ganachari S.V., Huh D.O. & Venkarataman A. 2011. Photo-irradiated bio-synthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg. Chem. Applic. 2011: Article ID: 650979.Google Scholar

  • Cho K.H., Park J.E., Osaka T. & Park S.G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956-960.CrossrefGoogle Scholar

  • Chortyk T.O., Severson R.F., Cutler H.C. & Siesson V.A. 1993.Antibiotic activities of sugar esters isolated from selected Nicotiana species. Biosci. Biotechnol. Biochem. 57: 1355-1356.CrossrefGoogle Scholar

  • Devi L.S. & Joshi S.R. 2012. Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40: 27-34.CrossrefGoogle Scholar

  • El-Batal A.I., ElKenawya N.M., Yassin A.S. & Amin M.A. 2015. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Reports 5: 31-39.CrossrefGoogle Scholar

  • El-Shanshoury A.E.R., ElSilk S.E. & Ebeid M.E. 2011. Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus Esh1 and their antimicrobial activities. ISRN Nanotechnology 2011: Article ID: 385480.Google Scholar

  • Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvam P.T. & Venketesan R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 6: 103-109.CrossrefWeb of ScienceGoogle Scholar

  • Goncharova A.V., Karpenyuk T.A., Tsurkan Y.S., Beisembaeva R.U., Kalbaeva A.M., Mukasheva T.D. & Ignatova L.V. 2013.Screening and identification of microorganisms-potential producers of arachidonic acid. Int. J. Biol. Agric. Biosystems Life Sci. Eng. 7: 368-371.Google Scholar

  • Jayanthi P. & Lalitha P. 2011. Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) Solms. Int. J. Pharm. Pharmaceut. Sci. 3: 126-128.Google Scholar

  • Kaiser J.P., Zuin S. & Wick P. 2013. Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci. Total Environ. 442: 282-289.CrossrefWeb of ScienceGoogle Scholar

  • Kannan R.R.R., Arumugam R., Ramya D., Manivannan K. & Anantharaman P. 2013. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl. Nanosci. 3: 229-233.CrossrefGoogle Scholar

  • Khaneja R., Perez-Fons L., Fakhry S., Baccigalupi L., Steiger S., To E., Sandmann G., Dong T.C., Ricca E., Fraser P.D. & Cutting S.M. 2010. Carotenoids found in Bacillus. J. Appl. Microbiol. 108: 1889-1902.Google Scholar

  • Kothari V.V., Kothari R.K., Kothari C.R., Bhatt V.D., Nathani N.M., Koringa P.G., Joshi C.G. & Vyas B.R.M. 2013. Genomic sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. Genome Announc. 2: e00337-14.Google Scholar

  • Lateef A. 2004. The microbiology of a pharmaceutical effluent and its public health implications.World J. Microbiol. Biotechnol. 20: 167-171.CrossrefGoogle Scholar

  • Lateef A., Adelere I.A. & Gueguim-Kana E.B. 2015a. Bacillus safensis LAU 13: a new source of keratinase and its multifunctional biocatalytic applications. Biotechnol. Biotechnol. Equip. 29: 54-63.Web of ScienceGoogle Scholar

  • Lateef A., Adelere I.A. & Gueguim-Kana E.B. 2015b. The biology and potential biotechnological applications of Bacillus safensis. Biologia 70: 411-419.CrossrefWeb of ScienceGoogle Scholar

  • Lateef A., Adelere I.A., Gueguim-Kana E.B., Asafa T.B. & Beukes L.S. 2015c. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5: 29-35.Google Scholar

  • Lateef A., Azeez M.A., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Ajetomobi F.E., Gueguim-Kana E.B. & Beukes, L.S. 2015d. Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoSci. (in press) http://dx.doi.org.10.1007/s12668-015-0181-x.CrossrefGoogle Scholar

  • Lateef A., Davies T.E., Adelekan A., Adelere I.A., Adedeji A.A. & Fadahunsi A.H. 2010. Akara Ogbomoso: microbiological examination and identification of hazards and critical control points. Food Sci. Technol. Int. 16: 389-400.Web of ScienceCrossrefGoogle Scholar

  • Lateef A. & Ojo M.O. 2015. Public health issues in the processing of cassava (Manihot esculenta) for the production of lafun and the application of hazard analysis control measures. Qual. Assur. Safety Crops Foods (in press) http://dx.doi.org.10.3920/QAS2014.0476.CrossrefWeb of ScienceGoogle Scholar

  • Lateef A., Ojo S.A., Azeez M.A., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Gueguim-Kana E.B. & Beukes L.S. 2015e. Cobweb as novel biomaterial for the green and ecofriendly synthesis of silver nanoparticles. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0492-9.CrossrefGoogle Scholar

  • Lateef A., Oloke J.K. & Gueguim-Kana E.B. 2004. Antimicrobial resistance of bacterial strains isolated from orange juice products. Afr. J. Biotechnol. 3: 334-338.CrossrefGoogle Scholar

  • Lateef A., Oloke J.K. & Gueguim-Kana E.B. 2005. The prevalence of bacterial resistance in clinical, food, water and some environmental samples in Southwest Nigeria. Environ. Monit. Assess. 100: 59-69.CrossrefGoogle Scholar

  • Lateef A., Oloke J.K., Gueguim Kana E.B., Oyeniyi S.O., Onifade O.R., Oyeleye A.O., Oladosu O.C. & Oyelami A.O. 2008. Improving the quality of agro-wastes by solid state fermentation: enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 24: 2369-2374.Web of ScienceCrossrefGoogle Scholar

  • Lateef A., Oloke J.K., Gueguim-Kana E.B. & Pacheco E. 2006. The microbiological quality of ice used to cool drinks and foods in Ogbomoso metropolis, Southwest, Nigeria. Internet J. Food Safety 8: 39-43.Google Scholar

  • Lateef A. & Yekeen T.A. 2006. Microbial attributes of a pharmaceutical effluent and its genotoxicity on Allium cepa. Int. J. Environ. Stud. 63: 534-536.Google Scholar

  • Lateef A., Yekeen T.A. & Ufuoma P.E. 2007. Bacteriology and genotoxicity of some pharmaceutical wastewaters in Nigeria. Int. J. Environ. Health 1: 551-562. Mishra A., Kumari M., Pandey S., Chaudhry V., Gupta K.C. & Nautiyal C.S. 2014. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour. Technol. 166: 235-242.CrossrefGoogle Scholar

  • Mokhtari M., Deneshpojouh S., Seyedbagheri S., Atashdehghan R., Abdi K., Sarkar S. & Sharverdi R.A. 2009. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effect of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 44: 1415-1421.CrossrefWeb of ScienceGoogle Scholar

  • Nazeruddin G.M., Prasad N.R., Prasad S.R., Shaikh Y.I., Waghmare S.R. & Adhyapak P. 2014. Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind. Crops Prod. 60: 212-216.Web of ScienceCrossrefGoogle Scholar

  • Olajire A.A. & Azeez L. 2011. Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. Afr. J. Food Sci. Technol. 2: 022-029.Google Scholar

  • Oyaizu M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315.Google Scholar

  • Patil C.D., Borase H.P., Patil S.V., Salunkhe R.B. & Salunke B.K. 2012. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non-target fish Poecillia reticulata. Parasitol. Res. 111: 555-562.CrossrefGoogle Scholar

  • Perez C., Paul M. & Bazerque P. 1990. Antibiotic assay by agar well diffusion method. Acta Biol. Med. Exp. 15: 113-115.Google Scholar

  • Porob S., Nayak S., Fernandes A., Padmanabhan P., Patil B.A., Meena R.M. & Ramaiah N. 2013. PCR screening for the surfactin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus tequilensis NIO11. Turk. J. Biol. 37: 212-221.Web of ScienceGoogle Scholar

  • Priyadarshini K.A., Murugan K., Panneerselvam C., Ponarulselvam S., Hwang J.S. & Nicoletti M. 2012. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111: 997-1006.CrossrefGoogle Scholar

  • Priyadarshini S., Gopinath V., Priyadharsshini N.M., Ali D.M. & Velusamy P. 2013. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its application. Colloids Surf. B Biointerfaces 102: 232-237.Google Scholar

  • Raja C.E. & Omine K. 2012. Arsenic, boron and salt resistant Bacillus safensis MS11 isolated from Mongolia desert soil. Afr. J. Biotechnol. 11: 2267-2275.Google Scholar

  • Rajarathinam M., Dhanpal D., Morukattu G., Joseph S. & Thangavelu K.P. 2014. Imparting potential antimicrobial and antifungal activities to water based interior paint using nanoparticles of silver as an additive - an eco-friendly approach. Adv. Sci. Eng. Med. 6: 676-682.CrossrefGoogle Scholar

  • Raliya R. & Tarafdar J.C. 2014. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an ecofriendly approach. Int. Nano Lett. 4: 1-10.CrossrefGoogle Scholar

  • Reza K.M., Ashrafalsadat N., Reza R.M., Taher N. & Ali N. 2014. Isolation and molecular identification of extracellular lipase-producing Bacillus species from soil. Annals Biol. Res. 5: 132-139.Google Scholar

  • Roohi A., Ahmed I., Khalid N., Iqbal M. & Jamil M. 2014. Isolation and phylogenetic identification of halotolerant/halophilic bacteria from the salt mines of Karak, Pakistan. Int. J. Agric. Biol. 16: 564-570.Google Scholar

  • Roopan S.M., Madhumitha G., Rahuman A.A., Kamaraj C., Bharathi A. & Surendra T.V. 2013. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crops Prod. 43: 631-635.CrossrefWeb of ScienceGoogle Scholar

  • Salem W.M., Haridy M., Sayed W.F. & Hassan N.H. 2014. Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind. Crops Prod. 62: 228-234.CrossrefWeb of ScienceGoogle Scholar

  • Samadi N., Golkaran D., Eslamifar A., Jamalifar H., Fazeli M.R. & Mohseni F.A. 2009. Intra/extracellular biosynthesis of silver nanoparticles by an autochtonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nanotechnol. 5: 247-253 Satomi M., Myron T., Duc L. & Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assemblyfacility surfaces. Int. J. Syst. Evol. Microbiol. 56: 1735-1740.CrossrefGoogle Scholar

  • Shameli K., Ahmad M.B., Zargar M., Wan Yunus W.M.Z., Ibrahim N.A., Sha-banzadeh P. & Ghaffari-Moghadam M. 2011. Synthesis and characterization of silver/montmorillonite/ chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 6: 271-284.Web of ScienceCrossrefGoogle Scholar

  • Shankar S., Jaiswal L., Aparna R.S.L. & Prasad R.G.S.V. 2014.Google Scholar

  • Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137: 75-78.Web of ScienceGoogle Scholar

  • Shanmugam C., Sivasubramanian G., Parthasarathi B., Baskaran K., Balachander R. & Parameswaran V.R. 2015. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/ s13204-015-0477-8. CrossrefGoogle Scholar

About the article

Received: 2015-09-14

Accepted: 2015-10-16

Published Online: 2016-01-08

Published in Print: 2015-10-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0164.

Export Citation

© 2016. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Iyabo Christianah Oladipo, Agbaje Lateef, Joseph Adetunji Elegbede, Musibau Adewuyi Azeez, Tesleem Babatunde Asafa, Taofeek Akangbe Yekeen, Akeem Akinboro, Evariste Bosco Gueguim-Kana, Lorika Selomi Beukes, Tolulope Oluyomi Oluyide, and Oluwatoyin Rebecca Atanda
Journal of Photochemistry and Photobiology B: Biology, 2017, Volume 173, Page 250
[2]
Vundru Anil Kumar, Kandru Ammani, Rajkumari Jobina, Pattnaik Subhaswaraj, and Busi Siddhardha
Journal of Photochemistry and Photobiology B: Biology, 2017, Volume 171, Page 1
[4]
Sunday A. Ojo, Agbaje Lateef, Musibau A. Azeez, Suliat M. Oladejo, Abiola S. Akinwale, Tesleem B. Asafa, Taofeek A. Yekeen, Akeem Akinboro, Iyabo C. Oladipo, Evariste B. Gueguim-Kana, and Lorika S. Beukes
IEEE Transactions on NanoBioscience, 2016, Volume 15, Number 5, Page 433
[5]

Comments (0)

Please log in or register to comment.
Log in