Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 70, Issue 2

Issues

Biodiversity and screening of halophilic bacteria with hydrolytic and antimicrobial activities from Yuncheng Salt Lake, China

Xin Li
  • Corresponding author
  • Life Science College, Yuncheng University, 1155 Fudan West Street, Yuncheng – 044000, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ying Hui Yu
  • Life Science College, Yuncheng University, 1155 Fudan West Street, Yuncheng – 044000, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-13 | DOI: https://doi.org/10.1515/biolog-2015-0033

Abstract

A total of 152 halophilic bacteria were isolated from Yuncheng Salt Lake, China. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that thirty-four strains were related to the phylum Firmicutes and belonged to three families, Bacillaceae, Clostridiaceae and Staphylococcaceae. The other strains were identified as the members of Halomonadaceae and Idiomarinaceae, which belonged to the phylum γ-Proteobacteria. Nine strains showed <97% similarity of 16S rRNA gene sequence compared to other published species, which might represent novel species. The halophilic isolates exhibited various hydrolytic activities. A total of 74, 15, 70, 18, 23 and 3 strains were found to produce extracellular amylase, protease, lipase, cellulase, pectinase and DNAase, respectively. Most hydrolase-producers were members of the genus Halomonas. Combined hydrolytic activities were shown by some strains. Screening of antimicrobial activity indicated that 3, 6, 15, 12, 15 and 16 of halophilic isolates could inhibit Staphylococcus aureus, Escherichia coli, Candida albicans, Fusarium moniliforme, Fusarium semitectum and Fusarium oxysporum, respectively. Results from the present study indicated that halophilic bacteria may be developed as promising sources for novel biocatalysts or bioactive substances in the field of biotechnology.

Keywords: biodiversity; halophilic bacteria; 16S rRNA gene; hydrolases; antimicrobial activity

References

  • Baati H., Amdouni R., Gharsallah N., Sghir A. & Ammar E. 2010. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr. Microbiol. 60: 157-161.CrossrefGoogle Scholar

  • Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41: D36-D42.Google Scholar

  • Chen L., Wang G.Y., Bu T., Zhang Y.B., Wang Y.X., Liu M. & Lin X.K. 2010. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World. J. Microbiol. Biotechnol. 26: 879-888.Web of ScienceCrossrefGoogle Scholar

  • Chun J., Lee J.H., Jung Y., Kim M., Kim S., Kim B.K. & Lim Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.CrossrefWeb of ScienceGoogle Scholar

  • DasSarma S. & DasSarma P. 2006. Halophiles, Encyclopedia of Life Sciences. Wiley, London.Google Scholar

  • Gao X.B., Wang Y.X., Li Y.L. & Guo Q.H. 2007. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China. Environ. Geol. 53: 795-803.CrossrefWeb of ScienceGoogle Scholar

  • Ghozlan H., Deif H., Kandil R.A. & Sabry S. 2006. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J. Gen. Appl. Microbiol. 52: 63-72.CrossrefGoogle Scholar

  • Han J., Hou J., Liu H., Cai S., Feng B., Zhou J. & Xiang H. 2010. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl. Environ. Microbiol. 76: 7811-7819.Web of ScienceCrossrefGoogle Scholar

  • Kumar S., Nei M., Dudley J. & Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9: 299-306.Web of ScienceCrossrefGoogle Scholar

  • Lee J.H., Shin H.H., Lee D.S., Kwon K.K., Kim S.J. & Lee H.K. 1999. Bacterial diversity of culturable isolates from seawater and a marine coral, Plexauridae sp., near Mun-Sum, Cheju- Island. J. Microbiol. 37: 193-199.Google Scholar

  • Li X. & Yu H.Y. 2011. Extracellular production of β-amylase by a halophilic isolate, Halobacillus sp. LY9. J. Ind. Microbiol. Biotechnol. 38: 1837-1843.CrossrefGoogle Scholar

  • Li X., Yu H.Y., Liu X.X. & Sun X. 2011. Production and characterization of a novel extracellular metalloproteinase by a newly isolated moderate halophile, Halobacillus sp. LY6. Folia. Microbiol. 56: 329-334.Web of ScienceGoogle Scholar

  • Litchfield C.D. & Gillevet P.M. 2002. Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J. Ind. Microbiol. Biotechnol. 28: 48-55.CrossrefGoogle Scholar

  • Liu H., Zhou Y., Liu R., Zhang K.Y. & Lai R. 2009. Bacillus solisalsi sp. nov., a halotolerant, alkaliphilic bacterium isolated from soil around a salt lake. Int. J. Syst. Evol. Microbiol. 59: 1460-1464.CrossrefWeb of ScienceGoogle Scholar

  • Margesin R. & Schinner F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73-83.Google Scholar

  • Mellado M.E. & Ventosa A. 2003. Biotechnological potential of moderately and extremely halophilic microorganisms, pp. 233-256. In: Barredo J.L. (ed.) Microorganisms for Health Care, Food and Enzyme Production. Research Signpost, Kerala.Google Scholar

  • Oren A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56-63.CrossrefGoogle Scholar

  • Roberts M.F. 2004. Osmoadaptation and osmoregulation in archaea: update 2004. Front. Biosci. 9: 1999-2019.CrossrefGoogle Scholar

  • Rohban R., Amoozegar M.A. & Ventosa A. 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36: 333-340.CrossrefWeb of ScienceGoogle Scholar

  • Sadfi-Zouaoui N., Essghaier B., Hajlaoui M.R., Fardeau M.L., Cayaol J.L., Ollivier B. & Boudabous A. 2008. Ability of moderately halophilic bacteria to control grey mould disease on tomato fruits. J. Phytopathol. 156: 42-52.Web of ScienceGoogle Scholar

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.Web of ScienceGoogle Scholar

  • Sánchez-Porro C., Martín S., Mellado E. & Ventosa A. 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 94: 295-300.CrossrefGoogle Scholar

  • Smibert R.M. & Krieg N.R. 1994. Phenotypic characterization, pp 607-654. In: Gerhardt P., Murray R.G.E., Wood W.A. & Krieg N.R. (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC.Google Scholar

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 22: 4673-4680.CrossrefGoogle Scholar

  • Urakawa H., Kita-Tsukamoto K. & Ohwada K. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145: 3305-3315.Google Scholar

  • Ventosa A. 2006. Unusual microorganisms from unusual habitats: hypersaline environments, pp 223-253. In: Logan N.A., Lappin-Scott H.M. & Oyston P.C.F. (eds) Prokaryotic Diversity - Mechanism and Significance. Cambridge University Press, Cambridge, London.Google Scholar

  • Ventosa A., Nieto J.J. & Oren A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504-544.Google Scholar

  • Yang L., Tan R. & Wang Q. 2002. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett. 43: 6545-6548.CrossrefGoogle Scholar

  • Yeon S.H., Jeong W.J. & Park J.S. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. J. Microbiol. 43: 1-10.Google Scholar

  • Yoon J.H., Kim H., Kim S.B., Kim H.J., Kim W.Y., Lee S.T., Goodfellow M. & Park Y.H. 1996. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int. J. Syst. Bacteriol. 46: 502-505.CrossrefGoogle Scholar

About the article

Received: 2014-06-20

Accepted: 2015-01-20

Published Online: 2015-03-13

Published in Print: 2015-02-01


Citation Information: Biologia, Volume 70, Issue 2, Pages 151–156, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0033.

Export Citation

© 2015.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fatma Masmoudi, Nouha Abdelmalek, Slim Tounsi, Christopher A. Dunlap, and Mohamed Trigui
Microbiological Research, 2019, Page 126331
[2]
Jie Ma, Hui Liu, Lei Tong, Yan Wang, Rong Chen, Shan Liu, Lei Zhao, Zhimin Li, and Liegang Cai
Hydrological Processes, 2019, Volume 33, Number 14, Page 1993

Comments (0)

Please log in or register to comment.
Log in