Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 70, Issue 3

Issues

Evaluation of genetic diversity of Rubus hyrcanus using Inter Simple Sequence Repeat (ISSR) and morphological markers

Ehsan Sedighi
  • Department of Agronomy and Plant breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mehdi Rahimmalek
  • Corresponding author
  • Department of Agronomy and Plant breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-27 | DOI: https://doi.org/10.1515/biolog-2015-0039

Abstract

Rubus hyrcanus is considered as an important wild blackberry species scattered around the Caspian Sea. In this research, ISSR and morphological markers were used to assess genetic diversity in several populations of R. hyrcanus from various geographical regions of Caspian Sea in Iran. Twenty-five populations of R. hyrcanus from three regions (North- Western (NW), North- Eastern (NE) and Central (C)) and one population from R. discolor were applied in this research. Ten primers were used to amplify bands out of which 157 (77.13%) were polymorphic. Cluster and Principle coordinate analyses (PCoA) showed the higher similarity of NE and NW populations. Analysis of molecular variance (AMOVA) revealed that the differences among three collection regions only accounted for 28.09% of the total variation, whereas differences among populations within groups were 66.03%. Analyses among three regions showed that the minimum gene diversity over loci was observed in NW (0.16) and NE (0.17), while the highest one was found in C (0.238) region. Furthermore, narrow genetic base and relatively high genetic differentiation obtained for studied R. hyrcanus genotypes. The results of morphological analysis in most cases corresponded to those obtained through molecular analyses.

Keywords: Rubus hyrcanus; R. discolor; blackberry; genetic variation; ISSR; morphology

References

  • Agar G., Halasz J. & Ercisli S. 2011. Genetic relationships among wild and cultivated blackberries (Rubus caucasicus L.) based on amplified fragment length polymorphism markers. Plant Biosyst. 145: 347-352.Google Scholar

  • Ahmadi H., Rahimmalek M. & Zeinali H. 2014. Assessment of genetic variation of chamomile (Matricaria chamomilla L.) using phytochemical, morphological and ISSR markers. Biochem. Syst. Ecol. 54: 190-197.CrossrefGoogle Scholar

  • Amsellem L., Noyer JL., Bourgeois T.L.E. & Hossaert-Mckey M. 2000. Comparison of genetic diversity of the invasive weedRubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 9: 443-455.CrossrefGoogle Scholar

  • Anderson J.A., Churchill G.A., Autrique J.E., Sorells M.E. & Tanksley S.D. 1993. Optimizing parental selection for geneticlinkage maps. Genome. 36: 181-186.CrossrefGoogle Scholar

  • Antonius-Klemola K. 1999. Molecular markers in Rubus (Rosaceae) research and breeding. J. Hort. Sci. Biotechnol. 74: 149-160.Google Scholar

  • Badjakov I., Todorovska E., Kondakova V., Boicheva R. & Atanassov A. 2006. Assessment the genetic diversity of Bulgarian raspberry germplasm collected by microsatellite and RAPD markers. J. Fruit. Ornament. Plant. Res. 14: 61-76.Google Scholar

  • Deighton N., Brennan R., Finn C. & Davies HV. 2000. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agri. 80: 1307-1313.CrossrefGoogle Scholar

  • Dickinson T.A., Lo E. & Talent N. 2007. Polyploidy, reproductive biology and Rosaceae: understanding evolution and making classifications. Plant Syst. Evol. 266: 59-78.Google Scholar

  • Evans K.J., Symon D.E., Whalen M.A., Hosking J.R., Barker R.M. & Oliver J.A. 2007. Systematics of the Rubus fructicosus aggregate (Rosaceae) and other exotic Rubus taxa in Australia. Aust. Syst. Bot. 20: 187-251.CrossrefGoogle Scholar

  • Finn C.E. 2001. Trailing blackberries: From clear-cuts to your table. Hort. Sci. 36: 236-238.Google Scholar

  • Finn C.E. & Knight V.H. 2002. What’s going on in the world of Rubus breeding. Acta Hort. 585: 31-38.Google Scholar

  • Finn C.E,Wennstrom K., Link J. & Ridout J. 2003. Evaluation of Rubus leucodermis populations from the Pacific North West. Hort. Sci. 38: 1169-1172.Google Scholar

  • Finn C.E., Swartz H.J., Moore P.P., Ballington J.R. & Kempler C. 2002. Use of 58 Rubus species in five North American breeding programs-breeders notes. Acta Hort. 585: 113-119.Google Scholar

  • Finn C.E. 2008. Blackberries, pp.83-114. In: Hancock J.F. (ed.), Temperate Fruit Crop Breeding: Germplasm to Genomics. Springer, Netherlands.Google Scholar

  • Ghahreman A. 1998. Flora Iranica, Rosaceae family, Research Institute of Forests and Rangelands, Tehran University, pp. 30-40.Google Scholar

  • Gharibi S., Rahimmalek M., Mirlohi A., Majidi M.M. & Sayed Tabatabaie B.E. 2011. Assessment of genetic diversity in Achillea millefolium subsp. millefolium and Achillea millefolium subsp. elbursensis using morphological and ISSR markers. J. Med. Plants Res. 5: 2413-2423.Google Scholar

  • Graham J., McNicol R.J., Greig K. & Van de Ven W.T.G. 1994. Identification of red raspberry cultivars and an assessment of their relatedness using fingerprints produced byrandom primers. J. Hort. Sci. 69: 123-130.Google Scholar

  • Graham J., Smith K., MacKenzie K., Jorgenson L., Hackett CA. & Powell W. 2004. Theconstruction of a genetic linkage map of red raspberry (Rubus idaeus sub sp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor. Appl. Genet. 109: 740-749.Google Scholar

  • Graham J., Smith K., Tierney I., MacKenzie K. & Hackett CA. 2006. Mapping gene H controlling cane pubescence in raspberry and its association with resistance tocane botrytis and spur blight, rust and cane spot. Theor. Appl. Genet. 112: 818-831.CrossrefGoogle Scholar

  • Graham J., Smith K., Woodhead M. & Russell J. 2002. Development and use of SSR markers in Rubus species. Mol. Ecol. Notes. 2: 250-252.CrossrefGoogle Scholar

  • Graham J., Squire G.R., Marshall B. & Harrison R.E. 1997. Spatially dependent genetic diversity within and between colonies of wild raspberry Rubus idaeus detected using RAPD markers. Mol. Ecol. 81: 533-542.Google Scholar

  • Graham J., Marshall B. & Squire G.R. 2003. Genetic differentiation over a spatial environmental gradient in wild Rubus idaeus populations. New Phytol. 157: 667-675.Google Scholar

  • Graham J., Woodhead M., Smith K., Russell J., Marshall B. & Ramsay G. 2009. New insight into wild red raspberry populations using simple sequence repeat markers. J. Amer. Soc. Hort .Sci. 134: 109-119.Google Scholar

  • Graham J. & Woodhead M. 2011.Wild Crop Relatives: Genetic, Genomic and Breeding Resources Temperate Fruits. Springer, pp. 179-196.Google Scholar

  • Gustafsson A. 1943.The genesis of the European blackberry flora. Lunds Univ Arsskrift., pp. 1-200.Google Scholar

  • Halvorsen B.L., Holte K., Myhrstad M.W., Barikmo I., Hvattum E., Remberg S.F., Wold A.B., Haffner K., Baugerod H., Andersen L.F., Moskaug J.O., Jacobs D.R. & Blomhoff R. 2002. A systematic screening of total antioxidants in dietary plants. J .Nutr. 132: 461-471.Google Scholar

  • Han J., Zhang W., Cao H., Chen S. & Wang Y. 2007.Genetic diversity and biogeography of the traditional Chinese medicine, Gardenia jasminoides, based on AFLP markers. Biochem. Syst. Ecol. 35: 138-145.CrossrefGoogle Scholar

  • Hokanson S.C. 2001. SNiPs, Chips, BACs and YACs: are small fruits part of the partymix?. Hort. Sci. 36: 859-871.Google Scholar

  • Hong Y.P., Kim M.J. & Hong K.N. 2003.Genetic diversity in natural populations of two geographic isolates of Korean black raspberry. J. Hort. Sci. Biotech. 78: 350-354.Google Scholar

  • Innis A.F., Forseth I.N., Whigham D.F. & McCormickM.K. 2011. Genetic diversity in the invasive Rubus phoenicolasius as compared to the native Rubus argutus using inter-simple sequence repeat (ISSR) markers. Biol. Invasions 8: 1735-1738.CrossrefGoogle Scholar

  • Jennings D.L., Daubeny H.A. & Moore J.N. 1991. Blackberries and raspberries (Rubus). Acta. Hort. 290: 331-392.Google Scholar

  • Jennings D.L. & McGregor G.R. 1988. Resistance to cane spot (Elsinoeveneta) in the redraspberry and its relationship to resistance to yellow rust (Phragmidium rubiidaei). Euphytica 37: 173-180.CrossrefGoogle Scholar

  • Khatamsaz M. 1992. Flora of Iran. Rosaceae, Research Inst of Forests and Rangelands, Iran, pp. 20-35.Google Scholar

  • Knight V.H. 1993. Review of Rubus species used in raspberry breeding at East Malling. Acta. Hort. 352: 363-371.Google Scholar

  • Kollmann J., Steinger T. & Roy BA. 2000. Evidence of sexuality in European Rubus (Rosaceae) species based on AFLP and allozyme analysis. Am. J. Bot. 87: 1592-1598.Google Scholar

  • Kraft T. & Nybom H. 1995. DNA fingerprinting and biometry can solve some taxonomic problems in apomictic blackberries (Rubus subgen. Rubus).Watsonia 20: 329-343.Google Scholar

  • Lewers K.S., Styan S.M.N., Hokanson S.C. & Bassil N.V. 2005. Strawberry Gen Bank derived and genomic simple sequence repeat (SSR) markers and their utility with straw berry, blackberry and red and black raspberry. J. Am. Soc. Hort. Sci. 130: 102-115.Google Scholar

  • Lopes M.S., Maciel G., Mendonca D., Gil F.S. & Machado A.D.C. 2006. Isolation and characterization of simple sequence repeat loci in Rubus hochstetterorum and their use in other species from the Rosaceae family. Mol. Ecol. Notes. 6: 750-752.CrossrefGoogle Scholar

  • Mantel N.A. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.Google Scholar

  • Marking H.J. 2006. DNA Marker Analysis of Genetic Diversity in Natural and Cultivated Populations of Rubus strigosus, American Red Raspberry. MS Thesis, Pennsylvania State Univ, Univ Park, PA, USA.Google Scholar

  • McCallum S., Woodhead M., Hackett C.A., Kassim A., Paterson A. & Graham J. 2010.Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry. Theor. Appl. Genet. 121: 611-627.Google Scholar

  • Meng R & Finn C.E. 2002. Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. J. Am. Soc. Hort. Sci. 127: 223-227.Google Scholar

  • MimuraM. & Aitken S.N. 2007. Adaptive gradients and isolationby- distance with postglacial migration in Picea sitchensis. Heredity 99: 224-232.CrossrefGoogle Scholar

  • Murray M.G. & Thompson W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res.8: 4321-4326.Google Scholar

  • Patamsyté J., Kleizait˙e V., Č˙esnien˙e T., Rancelis V. & Žvingila D. 2010. The genetic structure of red raspberry (Rubus idaeus L.) populations in Lithuania. Cent. Eur. J. Biol. 7: 496-506.Google Scholar

  • Pirkhezri M., Hassani M.E. & Hadian J. 2010. Genetic diversity in different populations of Matricaria chamomilla L. growing in Southwest of Iran, based on morphological and RAPD markers. Res. J. Med. Plants 4: 1-13.CrossrefGoogle Scholar

  • Pradeep Reddy M., Sarla N. & Siddiq E.A. 2002. Inter Simple Sequence Repeat (ISSR) and its application in plant breeding. Euphytica128: 9-17.CrossrefGoogle Scholar

  • Rahimmalek M., Bahreininejad B., Khorami M. & Sayed T.B.E. 2009. Genetic diversity and geographical differentiation of Thymus daenensis, an endangerd medicinal plant, as revealed by Inter Simple Sequence Repeat (ISSR) markers. Biochem. Genet. 47: 831-842.CrossrefGoogle Scholar

  • Rahimmalek M. 2012. Genetic relationships among Achillea tenuifolia populations using molecular and morphological Markers. Plant Omics J. 5: 128-135.Google Scholar

  • Riedl H. 1969.Flora Iranica, pp. 67-75. In: Rechinger K.H. (ed.), Acad Druck-u Verlasanstalt, Graz.Google Scholar

  • Robertson K.R. 1974.The genera Rosaceae in the southeastern United States. J. Arnold Arbor 55: 352-360.Google Scholar

  • Rohlf F.J. 1998. NTSYS-pc numerical taxonomy and multivariate analysis system, Version 2.00, Exeter software, Setauket, New York.Google Scholar

  • Sheidai M., Ziaee S., Farahani F., Talebi S.M., Noormohammadi Z. & Hasheminejad-Ahangarani Y.F. 2014. Infra-specific genetic and morphological diversity in Linum album (Linaceae). Biologia 69: 32-39.CrossrefGoogle Scholar

  • Skirvin R.M., Motoike S., Coyner M. & Norton M.A. 2005. Rubus spp., Cane Fruit, pp. 566-583. In: Litz R.E. (ed.), Biotechnology of Fruit and Nut Crops. CABI Publ., Wallingford, UK.Google Scholar

  • Stafne E.T. & Clark J.R. 2004. Genetic relatedness among eastern North American blackberry cultivars based on pedigree analysis. Euphytica 139: 95-104.CrossrefGoogle Scholar

  • Stafne E.T., Clark J.R., Weber C.A., Graham J. & Lewers K. 2005. Simple sequence repeat (SSR) markers for genetic mapping of raspberry and blackberry. J. Am. Soc. Hort. Sci. 130: 722-728.Google Scholar

  • Trople D.D. & Moore P.P. 1999.Taxonomic relationships in Rubus based on RAPD analysis. Acta. Hort. 505: 373-378.Google Scholar

  • Weber C.A. 2003.Genetic diversity in black raspberry detected by RAPD markers. Hort. Sci. 38: 269-272.Google Scholar

  • Woodhead M., Smith K., McCallum S., Williamson S., Cardle L., Mazzitelli L. & Graham J. 2008. Identification, characterization and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol. Breed.22: 555-563.CrossrefGoogle Scholar

  • Wright S. 1943. Isolation by distance. Genetics 28: 114-138. Google Scholar

About the article

Received: 2014-02-18

Accepted: 2014-12-22

Published Online: 2015-03-27

Published in Print: 2015-03-01


Citation Information: Biologia, Volume 70, Issue 3, Pages 339–348, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0039.

Export Citation

© 2015 Institute of Botany, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in