Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year




Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 70, Issue 3

Issues

C-heterochromatin and NORs distribution in karyotypes of three vespertilionid bat species from Turkey

Atilla Arslan / Jan Zima
  • Corresponding author
  • Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, CZ-60365 Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irfan Albayrak / Tarkan Yorulmaz / Emine Arslan
Published Online: 2015-03-27 | DOI: https://doi.org/10.1515/biolog-2015-0044

Abstract

The chromosomal banding analysis of the karyotypes of Turkish populations of Eptesicus serotinus, Nyctalus lasiopterus and Barbastellus barbastellus was performed with the use of C-banding and Ag-NOR staining. The results obtained in E. serotinus and N. lasiopterus were congruent with previous data reported from other regions. The karyotype of E. serotinus (2n = 50, NF = 52) contained a moderate amount of centromeric C-heterochromatin and a single NOR was localized in an acrocentric autosomal pairs. The karyotype of N. lasiopterus (2n = 42, NF = 54) contained a higher amount of centromeric C-heterochromatin and the NORs were localized in two autosomal pairs. The karyotype of B. barbastellus was standard in its general characteristics (2n = 32, NF = 54, low amount of C-heterochromatin) but the NOR was localized in only one acrocentric autosomal pair. In studies from other regions, the NORs were recognized in all five acrocentric autosomal pairs of the complement of B. barbastellus.

Keywords: Eptesicus serotinus; Nyctalus lasiopterus; Barbastella barbastellus; C-banding; Ag-NOR staining

References

  • Ao L., Gu X., Feng Q., Wang J., O’Brien P.C.M., Fu B., Mao X., Su W., Wang Y., Volleth M., Yang F. & Nie W. 2006. Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet. Genome Res. 115: 145-153. DOI: 10.1159/000095235 CrossrefGoogle Scholar

  • Ao L., Mao X.G., Nie W., Gu X., Feng Q., Wang J.H., Su W.T., Wang Y.X., Volleth M. & Yang F.T. 2007. Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res. 15: 257-267. DOI: 10.1007/s10577-007-1120-7CrossrefGoogle Scholar

  • Arslan A. & Zima J. 2014. Karyotypes of the mammals of Turkey and neighbouring regions: a review. Folia Zool. 63: 1-62. Google Scholar

  • Aşan N. 2001. Karyotype of Eptesicus serotinus (Schreber, 1774) in Turkey (Mammalia: Chiroptera). Turk. J. Zool. 25: 357-360.Google Scholar

  • Bickham J.W. & Baker R.J. 1979. Canalization model of chromosomal evolution, pp. 70-84. In: Schwarz J.H. & Rollins H.B. (eds), Models and Methodology in Evolutionary Theory, Bull. Carnegie Museum Nat. Hist. 13, Pittsburgh, 105 pp.Google Scholar

  • Fedyk S. & Ruprecht A.L. 1983a. Chromosomes of some species of vespertilionid bats. I. Banding patterns of Eptesicus serotinus chromosomes. Acta Theriol. 28: 159-170. DOI: 10.4098/AT.arch.83-12CrossrefGoogle Scholar

  • Fedyk S. & Ruprecht A.L. 1983b. Chromosomes of some species of vespertilionid bats. II. Evolutionary relationships of plecotine bats. Acta Theriol. 28: 171-182. DOI: 10.4098/AT.arch.83-13CrossrefGoogle Scholar

  • Ford C.E. & Hamerton J.L. 1956. Colchicine-hypotonic citrate squash sequence for mammalian chromosomes. Stain Technol. 31: 247-251. PMID: 13380616Google Scholar

  • Howell W.M. & Black D.A. 1980. Controlled silver staining for nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia 36: 1014-1015. PMID: 6160049Google Scholar

  • Karataş A. & Sözen M. 2007. Karyology of three vespertilionid bats (Chiroptera: Vespertilionidae) from Turkey. Acta Zool. Acad. Sci. Hung. 53: 185-192.Google Scholar

  • Karataş A., Yiğit N., Kankılı,c T. & C, olak E. 2004. Contribution to the distribution and karyology of some vespertilionid bats (Mammalia: Chiroptera) from Turkey. Zool. Middle East 31: 5-12. DOI: 10.1080/09397140.2004.10638017CrossrefGoogle Scholar

  • McBee K.M., Bickham J.W., Yenbutra S., Nabhitabhata J. & Schlitter D.A. 1986. Standard karyology of nine species of vespertilionid bats (Chiroptera: Vespertilionidae) from Thailand. Ann. Carnegie Museum 55: 95-116.Google Scholar

  • Ono T. & Obara Y. 1994. Karyotypes and Ag-NOR variations in Japanese vespertilionid bats (Mammalia: Chiroptera). Zool. Sci. 11: 473-484.Google Scholar

  • Simmons N.B. 2005. Chiroptera, pp. 312-529. In: Wilson D.E. & ReederD.A.M. (eds.), Mammal Species of theWorld: A Taxonomic and Geographic Reference (3rd ed), John Hopkins University Press, Baltimore, 2142 pp. ISBN: 978-0-8018-8221-0Google Scholar

  • Sumner A.T. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304-306. DOI: 10.1016/0014-4827(72)90558-7CrossrefGoogle Scholar

  • Volleth M. 1987. Differences in the location of the nucleolus organizer regions in European vespertilionid bats. Cytogenet. Cell Genet. 44: 186-197. DOI: 10.1159/000132371CrossrefGoogle Scholar

  • Volleth N. 1989. Karyotypevolution und Phylogenie der Vespertilionidae (Mammalia: Chiroptera. PhD Thesis, University of Erlangen-N¨urnberg, 262 pp.Google Scholar

  • Volleth M. 1992. Comparative analysis of the banded karyotypes of the European Nyctalus species (Vespertilionidae; Chiroptera), pp. 221-226. In: Horaček I. & Vohralik V. (eds), Prague Studies in Mammalogy. Charles University Press, Prague, 245 pp. ISBN: 8070665564, 9788070665565Google Scholar

  • Volleth M. & Eick G. 2012. Chromosome evolution in bats as revealed by FISH: the ongoing search for the ancestral chiropteran karyotype. Cytogenet. Genome. Res. 137: 165-173. DOI: 10.1159/000338929 CrossrefWeb of ScienceGoogle Scholar

  • von Helversen O., Heller K.-G., Mayer F., Nemeth A., Volleth M., Gombkoto P. 2001. Cryptic mammalian species: a new species of whiskered bat (Myotis alcathoe n. sp.) in Europe. Naturwissenschaften 88: 217-223. DOI: 10.1007/s001140100225CrossrefGoogle Scholar

  • Yiğit N., Bulut S,., Karata,s A., C, am P. & Saygılı F. 2008. Contribution to the distribution, morphological pecularities, and karyology of the greater noctule, Nyctalus lasiopterus (Chiroptera: Vespertilionidae) in southwestern Turkey. Turk. J. Zool. 32: 53-58.Google Scholar

  • Zima J. & Horaček I. 1985. Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiroptera). Acta Univ. Carol. Biol. 1981: 311-329.Google Scholar

  • Zima J., Červeny J. & Horaček I. 1989. Karyotypes of Eptesicus bottae and some other vespertilionid bat species from Soviet Central Asia, pp. 105-110. In: Hanak V., Horaček I. & Gaisler J. (eds), European Bat Research 1987, Charles University Press, Praha, 718 pp. Google Scholar

About the article

Received: 2014-09-22

Accepted: 2015-01-23

Published Online: 2015-03-27

Published in Print: 2015-03-01


Citation Information: Biologia, Volume 70, Issue 3, Pages 400–405, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0044.

Export Citation

© 2015 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in