Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 70, Issue 3

Issues

Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences

Deep Chandra Suyal
  • Department of Microbiology, College of Basic Sciences and Humanities; G.B.P.U.A&T, Pantnagar - 263145, Uttarakhand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amit Yadav
  • Microbial Culture Collection, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune – 411 007, Maharashtra,India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yogesh Shouche
  • Microbial Culture Collection, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune – 411 007, Maharashtra,India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reeta Goel
  • Corresponding author
  • Department of Microbiology, College of Basic Sciences and Humanities; G.B.P.U.A&T, Pantnagar – 263145, Uttarakhand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-27 | DOI: https://doi.org/10.1515/biolog-2015-0048

Abstract

Agriculture is an important livelihood activity in the Himalayan regions. Our previous studies revealed the presence of diverse diazotrophic assemblage in indigenous red kidney bean (RKB) rhizospheric soil from two different locations of Western Indian Himalaya, namely S1 (Chhiplakot, 30.70◦ N/80.30° E) and S2 (Munsyari, 30.60◦ N/80.20° E), selected on the basis of real-time PCR analysis. In this study, two 16S rRNA gene clone libraries (SB1 and SB2, respectively) were constructed using the same rhizospheric soil samples for assessing the total bacterial diversity and their community structure. A total of 760 clones were obtained, with ∼54-59% of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Bacteroidetes, Chloroflexi, Acidobactria, Planctomycetes, Firmicutes, Nitrospira, Gemmatimonadetes, Cyanobacteria, Verrucomicrobia, OD1, OP11 and Actinobacteria were encountered in both the soils, sequences belonging to bacteria from the classes Chlorobi and BRC1 were only detected in the S1 soil. Both the libraries showed similar bacterial community compositions, with Pseudomonas (∼33-34%) as predominant genus. Phylogenetic analysis revealed that all the clone sequences were clustered in different bacterial groups as per their resemblance with their respective phylogenetic neighbours. Major clusters were formed by Gammapreoteobacteria followed by Bacteroidetes and Alphaproteobacteria. A good fraction of the clone sequences has no resemblance with existing groups, thereby suggesting the need of culture-dependent studies from Himalayan regions. To the best of our knowledge, this study is the first major metagenomic effort on Himalayan RKBs rhizobacteria revealing fundamental information that needs to be explored for functional studies.

This article offers supplementary material which is provided at the end of the article.

Keywords: Western Indian Himalayan; Phaseolus vulgaris; bacterial diversity; rhizosphere; 16S rRNA gene

References

  • Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41: D36-D42.Google Scholar

  • Cetecioglu Z., Ince B.K., Kolukirik M. & Ince O. 2009. Biogeographical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the Marmara Sea. Mar. Pollut. Bull. 3: 384-395.Web of ScienceCrossrefGoogle Scholar

  • Davidson E.A. & Janssens I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173.Google Scholar

  • Deangelis K.M. & Firestone M.K. 2012. Phylogenetic clustering of soil microbial communities by 16S rRNA but not 16S rRNA genes. Appl. Environ. Microbiol. 78: 2459-2461.CrossrefGoogle Scholar

  • Diaz-Alcantara C.A., Ramirez-Bahena M.H., Mulas D., Garcia- Fraile P., Gomez-Moriano A., Peix A., Velazquez E. & Gonzalez-Andres F. 2013. Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst. Appl. Microbiol. 37: 149-56.Web of ScienceCrossrefGoogle Scholar

  • Jobbagy E.G. & Jackson R.B. 2000. The vertical distribution of soil carbon and its relation to climate and vegetation. Ecol. Appl. 10: 423-436.CrossrefGoogle Scholar

  • Jorquera M.A., Shaharoona B., Nadeem S.M., de la Luz M.M. & Crowley D.E. 2012. Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb. Ecol. 64: 1008-1017.CrossrefWeb of ScienceGoogle Scholar

  • Kumar S., Suyal D.C., Dhauni N., Bhoriyal M. & Goel R. 2014. Relative plant growth promoting potential of Himalayan psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum L., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.)Gaertn. Afr. J. Microbiol. 8: 3931-3943.Google Scholar

  • La Sorte F.A. & Jetz W. 2010. Avian distributions under climate change: towards improved projections. J. Exp. Biol. 213: 862-869.Web of ScienceGoogle Scholar

  • Li P., Wang Q., Endo T., Zhao X. & Kakubari Y. 2010. Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests. Geoderma 154: 407-415.Web of ScienceGoogle Scholar

  • Liu Y., Yao T., Jiao N., Kang S., Xu B., Zeng Y., Huang S. & Liu X. 2009. Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13: 411-423. Magurran A.E. 2004. Measuring biological diversity. Blackwell Publishing, Oxford, 264 pp.CrossrefWeb of ScienceGoogle Scholar

  • Philippot L., Raaijmakers J.M., Lemanceau P. & van der Putten W.H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11: 789-799.CrossrefGoogle Scholar

  • Pradhan S., Srinivas T.N.R., Pindi P.K., Kishore K.H., Begum Z., Singh P.K., Singh A.K., Pratibha M.S., Yasala A.K., Reddy G.S. & Shivaji S. 2010. Bacterial biodiversity from Roopkund glacier, Himalayan mountain ranges, India. Extremophiles 14: 377-395.Web of ScienceCrossrefGoogle Scholar

  • Prema Latha K., Soni R., Khan M., Marla S.S. & Goel R. 2009. Exploration of csp gene(s) from temperate and glacier soils of Indian Himalaya and in silico analysis of encoding proteins. Curr. Microbiol. 58: 343-348.Web of ScienceCrossrefGoogle Scholar

  • Sanchez A.C., Gutierrez R.T., Santana R.C., Urrutia A.B., Fauvart M., Michiels J. & Vanderleyden J. 2014. Effects of coinoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur. J. Soil Biol. 62: 105-112.Web of ScienceCrossrefGoogle Scholar

  • Schmidt S.K., Nemergut D.R., Miller A.E., Freeman K.R., King A.J. & Seimon A. 2009. Microbial activity and diversity during extreme freeze-thaw cycles in pre glacial soils, 5400 m elevation, Cordillera Vilcanota, Peru. Extremophiles 13: 807-816.Web of ScienceGoogle Scholar

  • Schulp C.J.E., Nabuurs G.J.,Verburg P.H. & de Waal R.W. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecol. Manag. 256: 482-490.Web of ScienceGoogle Scholar

  • Shannon C. 1948. A mathematical theory of communication. Bell. Syst. Tech. J. 27: 379-423.CrossrefGoogle Scholar

  • Shivaji S., Pratibha M.S., Sailaja B., Kishore K.H., Singh A.K., Begum Z. Anarasi U., Prabagaran S.R., Reddy G.S.N. & Srinivas T.N.R. 2011. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15: 1-22.CrossrefWeb of ScienceGoogle Scholar

  • Simpson E.H. 1949. Measurement of diversity. Nature 163: 688.Google Scholar

  • Singh P., Singh S.S., Elster J. & Mishra A.K. 2013. Molecular phylogeny, population genetics, and evolution of heterocystous Cyanobacteria using nifH gene sequences. Protoplasma 250: 751-64.Web of ScienceGoogle Scholar

  • Soni R., Kumari S., Zaidi M.G.H., Shouche Y.S. & Goel R. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp 235-243. In: Ahmad I., Pichtel J. & Hayat S. (eds) Plant-Bacteria Interactions. Strategies and Techniques to Promote Plant Growth. Wiley- VCH Verlag GmbH and Co. KGaA, Weinheim.Google Scholar

  • Soni R., Saluja B. & Goel R. 2010. Bacterial community analysis using temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA PCR products of soil metagenome. Ekologija 56: 94-98.Google Scholar

  • Surakasi V.P., Antony C.P., Sharma S., Patole M.S. & Shouche Y.S. 2010. Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake. J. Basic Microbiol. 50: 465-474.Google Scholar

  • Suyal D.C., Shukla A. & Goel R. 2014a. Growth promotory potential of the psychrophilic diazotroph Pseudmonas migulae S10724 against native Vigna radiata (L.) Wilczek. 3 Biotech 4: 665-668.Google Scholar

  • Suyal D.C., Yadav A., Shouche Y. & Goel R. 2014b. Diazotrophic diversity in the rhizosphere of western Indian Himalayan red kidney beans (Phaseolus vulgaris L.). 3 Biotech DOI 10.1007/s13205-014-0238-5.CrossrefGoogle Scholar

  • Suyal D.C., Yadav A., Shouche Y. & Goel R. 2014c. Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr. Microbiol. 68: 543-550.Web of ScienceCrossrefGoogle Scholar

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.CrossrefGoogle Scholar

  • Wagner D., Kobabe S. & Liebner S. 2009. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Can. J. Microbiol. 55: 77-83.Google Scholar

  • Yang L., Luo T. & Wu S. 2005. Root biomass and underground C and N storage of primitive Korean pine and broad-leaved Climax forest in Changbai mountains at its different succession stages. Chinese J. Appl. Ecol. 16: 1195-1199.Google Scholar

  • Yoo K., Armundson R., Heimsath A.M. & Dietrich W.E. 2006. Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma 130: 47-65.Google Scholar

  • Zhang X., Yao T., Tian L., Xu S. & An L. 2008. Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microbiol. Ecol. 55: 476-488. CrossrefGoogle Scholar

About the article

Received: 2014-09-03

Accepted: 2015-02-27

Published Online: 2015-03-27

Published in Print: 2015-03-01


Citation Information: Biologia, Volume 70, Issue 3, Pages 305–313, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0048.

Export Citation

© 2015 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nitin Rawat, Mansi Sharma, Deep Chandra Suyal, D. K. Singh, Divya Joshi, Pranjali Singh, and Reeta Goel
Journal of Soil Science and Plant Nutrition, 2019
[2]
Deep Chandra Suyal, Saurabh Kumar, Divya Joshi, Amit Yadav, Yogesh Shouche, and Reeta Goel
Biologia, 2019
[3]
Divya JOSHI, Ramesh CHANDRA, Deep Chandra SUYAL, Saurabh KUMAR, and Reeta GOEL
Pedosphere, 2019, Volume 29, Number 3, Page 388
[6]
Shikha Raghuwanshi, M. G. H. Zaidi, Saurabh Kumar, and Reeta Goel
Journal of Polymers and the Environment, 2017
[7]
Supriya Tomer, Deep Chandra Suyal, Anjana Shukla, Jyoti Rajwar, Amit Yadav, Yogesh Shouche, and Reeta Goel
3 Biotech, 2017, Volume 7, Number 2
[8]
Deep C. Suyal, Saurabh Kumar, Amit Yadav, Yogesh Shouche, and Reeta Goel
Frontiers in Microbiology, 2017, Volume 8
[9]
Shikha Raghuwanshi, Tithi Agarwal, Amit Yadav, MGH Zaidi, Yogesh Shouche, and Reeta Goel
Chemistry and Ecology, 2016, Volume 32, Number 6, Page 583

Comments (0)

Please log in or register to comment.
Log in