Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 70, Issue 5


Differential cadmium resistance of two morphologically distinct types of potato (Solanum tuberosum) callus

Seyedardalan Ashrafadeh / Sally Gaw
  • Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8040, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chris N. Glover
  • School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8040, New Zealand;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David W.M. Leung
  • School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8040, New Zealand;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-23 | DOI: https://doi.org/10.1515/biolog-2015-0067


Callus culture has been used to study the cellular basis of sensitivity of plants to toxic trace elements including cadmium. Callus friability may be related to plant response to exposure to trace elements as callus friability is related to the plant cell wall which plays a role in resistance of plant cells to trace element toxicity. The aim of this study was to investigate the relationship between two types of potato callus with different friability and their sensitivity to cadmium. A high frequency (about 80%) of leaf or internodal explants of potato (Solanum tuberosum L., cv, Iwa) formed a friable, pale green callus (type-A callus) on half-strength basal Murashige and Skoog medium supplemented with 12.42 μM picloram. On medium supplemented with 4.43 μM 6-benzyladenine (BA) and 5.37 μM 1-naphthalene acetic acid (NAA), a compact, non-friable callus (type-B callus) was induced in about 80% of the explants. Type-B callus was greener than type-A callus. Callus formation in both the leaf and internodal explants were completely inhibited on the medium used for induction of type-A or type-B callus when the respective medium was supplemented with 54 μM cadmium chloride (Cd). The type-B callus was found to be more resistant (less necrosis and higher relative growth rates) to 27, 54, and 109 μM of Cd than the type-A callus. The type-B callus also exhibited a higher level of peroxidase activity (a marker antioxidant enzyme counteracting oxidative stress) than the type-A callus when cultured on these Cd concentrations. This is the first study showing the importance of callus friability in plant cell response to Cd treatment.

Keywords: callus friability; guaiacol peroxidase activity; growth tolerance index; heavy metal resistance


  • Akaneme F.I. & Ene-Obong E.E. 2008. Tissue culture in Pinus caribaea Mor. var. Hondurensis barr. and golf. II: Effects of two auxins and two cytokinins on callus growth habits and subsequent organogenesis. Afr. J. Biotech.7: 757-765.Google Scholar

  • Azevedo H., Pinto G.C. & Santos C. 2005. Cadmium effects in sunflower: membrane permeability and changes in catalase and peroxidase activity in leaves and calluses. J. Plant Nutr. 28: 2233-2241.CrossrefGoogle Scholar

  • Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H. & Masclaux-Daubresse C. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 45: 1681-1693.CrossrefGoogle Scholar

  • Clemens S., Aarts G.M., Thomine S. & Verbruggen N. 2013. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Sci. 18: 92-99.CrossrefWeb of ScienceGoogle Scholar

  • Dokhaniyeh A.Y., Kohnehrouz B.B., Mousavi A., Gholizadeh A. & Khalighi A. 2011. Rapid and high efficiency regeneration from potato (Solanum tuberosum L.) using thidiazuron as cytokinin source. J. Food Agri. Environ. 9: 613-617.Google Scholar

  • Doran P.M. 2009. Application of plant tissue cultures in phytoremediation research: Incentives and limitations. Biotech. Bioeng. 103: 60-76.CrossrefGoogle Scholar

  • Fan J.L., Ziadi N., Belanger G., Parent L.E, Cambouris A. & Hu Z.Y. 2009. Cadmium accumulation in potato tubers produced in Quebec. Can. J. Soil Sci. 89: 435-443.CrossrefWeb of ScienceGoogle Scholar

  • Foyer C.H., Lopez-Delgado H., Dat J.F. & Scott I.M. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant. 100: 241-254.CrossrefGoogle Scholar

  • Fornazier R.F., Ferreira R.R., Pereira G.J.G., Molina S.M.G., Smith R.J., Lea P.J. & Azedvedo R.A. 2002. Cadmium stress in sugar cane callus cultures: Effect on antioxidant enzymes. Plant Cell Tissue Organ Cult. 71: 125-131.CrossrefGoogle Scholar

  • Hagen S.R., LeTourneau D., Muneta P. & Brown J. 1990. Initiation and culture of potato tuber callus tissue with picloram. Plant Growth Regul. 9: 341-345.CrossrefGoogle Scholar

  • Halmer P. & Thorpe T.A. 1976. Kinetin induced changes in cell wall composition of tobacco callus. Phytochem. 15: 1585-1588.CrossrefGoogle Scholar

  • JayaSree T., Pavan U., Ramesh M., Rao A.V., Reddy J.M. & Sadanandam A. 2001. Somatic embryogenesis from leaf cultures of potato. Plant Cell Tissue Organ Cult. 64: 13-17.CrossrefGoogle Scholar

  • Karuppanapandian T., Moon J.C., Kim C., Manoharan K. & Kim W. 2011. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci. 5: 709-725.Google Scholar

  • Lei Y., Korpelainen H. & Li C. 2007. Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68: 686-694.Web of ScienceGoogle Scholar

  • Liners F., Gaspar T. & Van Cutsem P. 1994. Acetyl- and methylesterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192: 545-456.Google Scholar

  • Murashige T. & Skoog F. 1962. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.CrossrefGoogle Scholar

  • Namjooyan S., Khavari-Nejad R., Bernard F., Namdjoyan S. & Piri H. 2012. The effect of cadmium on growth and antioxidant responses in the safflower (Carthamus tinctorius L.) callus. Turkish J. Agri. Forest. 36: 145-152.Google Scholar

  • Nehnevajova E., Herzig R., Erismann K.H. & Schwitzguebel J.P. 2007. In vitro breeding of Brassica juncea L. to enhance metal accumulation and extraction properties. Plant Cell Rep. 26: 429-437.CrossrefWeb of ScienceGoogle Scholar

  • Noctor G. & Foyer C.H. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol. Biol. 49: 249-279.CrossrefGoogle Scholar

  • Olmos E., Martinez-Solano J.R., Piqueras A. & Hellin E. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54: 291-301.CrossrefGoogle Scholar

  • Pal A.K., Acharya K. & Ahuja P.S. 2012. Endogenous auxin level is a critical determinant for in vitro adventitious shoot regeneration in potato (Solanum tuberosum L.). J. Plant Biochem. Biotech. 21: 205-212.CrossrefGoogle Scholar

  • Phang I.C., Leung D.W.M., Taylor H.H. & Burritt D.J. 2011. Correlation of growth inhibition with accumulation of Pb in cell wall and changes in response to oxidative stress in Arabidopsis thaliana seedlings. Plant Growth Regul. 64: 17-25.CrossrefWeb of ScienceGoogle Scholar

  • Rai M.K., Kalia R.K., Singh R., Gangola M.P. & Dhawan A.K. 2011. Developing stress tolerant plants through in vitro selection - An overview of the recent progress. Environ. Exp. Bot. 71: 89-98.CrossrefWeb of ScienceGoogle Scholar

  • Ranieri A., Castagna A., Lorenzini G. & Soldatini, G.F. 1997. Changes in thylakoid protein patterns and antioxidant levels in two wheat cultivars with different sensitivity to sulfur dioxide. Environ. Exp. Bot. 37: 125-135.CrossrefGoogle Scholar

  • Reid R.J., Dunbar K.R. & McLaughlin M.J. 2003. Cadmium loading into potato tubers: The roles of the periderm, xylem and phloem. Plant Cell Environ. 26: 201-206. Milla M.A.R., Maurer A., Huete A.R. & Gustafson J.P. 2003.CrossrefGoogle Scholar

  • Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 36: 602-615.PubMedGoogle Scholar

  • Schutzendubel A. & Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351-1365.CrossrefGoogle Scholar

  • Semane B., Cuypers A., Smeets K., Van B.F., Horemans N., Schat H. & Vangronsveld J. 2007. Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant. 129: 519-528.CrossrefWeb of ScienceGoogle Scholar

  • Sharma P., Jha A.B., Dubey R.S. & Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., Article ID: 217037, 26 p.Google Scholar

  • Shekhawat G.S., Prasad A., Verma K. & Sharma A. 2008. Changes in growth, lipid peroxidation and antioxidant system in seedlings of Brassica juncea under cadmium stress. Biochem. Cell Arch. 8: 145-149.Google Scholar

  • Shekhawat G.S., Verma K., Jana S., Singh K., Teotia P. & Prasad A. 2010. In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma 239: 31-38.Web of ScienceGoogle Scholar

  • Tican A., Campeanu G., Chiru N. & Ivanovici D. 2008. Using of unconventional methods for obtaining somaclonal variations, having as goal making of new potato varieties with resistance at diseases and pests. Romanian Biotech. Lett. 13: 3791-3798. Google Scholar

  • Visarada K.B.R.S., SailajaM. & Sarma N.P. 2002. Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biol. Plant. 45: 495-502.CrossrefGoogle Scholar

  • Yee S., Stevens B., Coleman S., Seabrook J.F.A. & Li X.Q. 2001. High efficiency regeneration in vitro from petioles with intact leaflets. Am. J. Potato Res. 78: 151-157.CrossrefGoogle Scholar

  • Yoon K.S. & Leung D.W.M. 2004. Relative importance of maltose and sucrose supplied during a 2-step potato microtuberization process. Acta Physiol. Plant. 26: 47-52.CrossrefGoogle Scholar

  • Zhang H., Jiang Y., He Z. & Ma M. 2005. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J. Plant Physiol. 162: 977-984. CrossrefGoogle Scholar

About the article

Received: 2014-06-12

Accepted: 2015-03-04

Published Online: 2015-06-23

Published in Print: 2015-05-01

Citation Information: Biologia, Volume 70, Issue 5, Pages 581–587, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0067.

Export Citation

© 2015.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Seyedardalan Ashrafzadeh, David W. M. Leung, and Randall P. Niedz
PLOS ONE, 2017, Volume 12, Number 10, Page e0185621

Comments (0)

Please log in or register to comment.
Log in