Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 70, Issue 5

Issues

Cloning and expression analysis of phenylalanine ammonia-lyase (PAL) gene family and cinnamate 4-hydroxylase (C4H) from Dryopteris fragrans

Yan Li
  • Laboratory of Plant Research College of Life Sciences, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lili Sun
  • Laboratory of Plant Research College of Life Sciences, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hemeng Wang
  • Laboratory of Plant Research College of Life Sciences, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rui Gao
  • Laboratory of Plant Research College of Life Sciences, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People’s Republic of China;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Junzheng Zhang
  • School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150030, Heilongjiang, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Baozhong Hu
  • Laboratory of Plant Research College of Life Sciences, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People’s Republic of China;
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ying Chang
  • Laboratory of Plant Research College of Life Sciences, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, Heilongjiang, People’s Republic of China;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-23 | DOI: https://doi.org/10.1515/biolog-2015-0083

Abstract

Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) are the first and second key enzymes of the phenylpropanoid pathway. Systematic analysis of the DfPAL gene family and DfC4H have not been performed in Dryopteris fragrans (L.) Schott. To date, PAL and C4H genes have been less extensively studied in monilophytes than in angiosperms. Here we report the identification of threeDfPAL and DfC4H fragments using cDNA cloning and sequencing. Bioinformatics and phylogenetic analyses showed that DfPAL1 and DfPAL2 were quite similar at the amino acid level (94.88%), whereas DfPAL3 was relatively low similar to both of the other paralogs. Some important functional domains were conserved in three DfPAL and DfC4H genes. DfPAL3 and DfC4H were highly expressed in gametophytes and petioles of D. fragrans, DfPAL1 had the highest expression in petioles, and DfPAL2 had low expression in leaves and petioles. Only DfPAL2 and DfC4H were induced with 4°C, 35°C, and UV treatments, but the time responses were different. These results suggest complexity of the DfPAL- and DfC4H-associated metabolic network in D. fragrans. The results provide a basis for elucidating the role of DfPAL and DfC4H genes in the biosynthesis of bioactive compounds.

Keywords: Dryopteris fragrans; phenylalanine ammonia-lyase; cinnamate 4-hydroxylase; protein expression

References

  • Achnine L., Blancaflor E.B., Rasmussen S. & Dixon R.A. 2004. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16: 3098-3109.Google Scholar

  • Ao Z. & Li G. Ferns of Heilongjiang Province. Northeast Forestry University Press, Harbin, 1990, 154 pp.Google Scholar

  • Bate N.J., Orr J., Ni W., Meromi A., Nadler-Hassar T., Doerner P.W., Dixon R.A., Lamb C.J. & Elkind Y. 1994. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA 91: 7608-7612.Google Scholar

  • Camm E.L. & Towers G. 1973. Phenylalanine ammonia lyase. Phytochemistry 12: 961-973.Google Scholar

  • Chang Y. 2009. Progress on research of Dryopteris fragrans (L.) schott in domestic and aboard. Northern Horticulture 4: 113-115.Google Scholar

  • Dixon R.A. & Paiva N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097.Google Scholar

  • Ehlting J., Hamberger B., Million-Rousseau R. & Werck- Reichhart D. 2006. Cytochromes P450 in phenolic metabolism. Phytochem. Rev. 5: 239-270.Google Scholar

  • Hahlbrock K. & Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Biol. 40: 347-369.Google Scholar

  • Harakava R. 2005. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genet. Mol. Biol. 28: 601-607.Google Scholar

  • Hou X., Shao F., Ma Y. & Lu S. 2013. The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genomewide characterization, molecular cloning and expression analysis. Mol. Biol. Rep. 40: 4301-4310.Web of ScienceGoogle Scholar

  • Huang Q., Li W., Fan R. & Chang Y. 2014. New MADS-box gene in fern: cloning and expression analysis of DfMADS1 from Dryopteris fragrans. PLoS One 9: e86349.Web of ScienceGoogle Scholar

  • Kao Y.Y., Harding S.A. & Tsai C.J. 2002. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130: 796-807.Google Scholar

  • Kim J., Choi B., Natarajan S. & Bae H. 2013. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses. Plant Omics J. 6: 65-72.Google Scholar

  • Kumar A. & Ellis B.E. 2001. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol. 127: 230-239.Google Scholar

  • Lange B.M., Lapierre C. & Sandermann H., Jr. 1995. Elicitorinduced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol. 108: 1277-1287.Google Scholar

  • Lepelley M., Mahesh V., McCarthy J., Rigoreau M., Crouzillat D., Chabrillange N., de Kochko A. & Campa C. 2012. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta 236: 313-326.Web of ScienceGoogle Scholar

  • Li X.J., Wang W., Luo M., Li C.Y., Zu Y.G., Mu P.S. & Fu Y.J. 2012. Solvent-free microwave extraction of essential oil from Dryopteris fragrans and evaluation of antioxidant activity. Food Chem. 133: 437-444.Google Scholar

  • Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−−ΔΔCT method. Methods 25: 402-408.Google Scholar

  • MacDonald M.J. & D’Cunha G.B. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85: 273-282.Web of ScienceGoogle Scholar

  • Moffitt M.C., Louie G.V., Bowman M.E., Pence J., Noel J.P. & Moore B.S. 2007. Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry 46: 1004-1012.CrossrefWeb of ScienceGoogle Scholar

  • Olsen K.M., Lea U.S., Slimestad R., Verheul M. & Lillo C. 2008. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J. Plant Physiol. 165: 1491-1499.Google Scholar

  • Pina A. & Errea P. 2008. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. J. Plant Physiol. 165: 705-714.Google Scholar

  • Raes J., Rohde A., Christensen J.H., Van de Peer Y. & Boerjan W. 2003. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 133: 1051-1071.Google Scholar

  • Rohde A., Morreel K., Ralph J., Goeminne G., Hostyn V., De Rycke R., Kushnir S., Van Doorsselaere J., Joseleau J.P., Vuylsteke M., Van Driessche G., Van Beeumen J., Messens E. & Boerjan W. 2004. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16: 2749-2771.Google Scholar

  • Shang Q.M., Li L. & Dong C.J. 2012. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta 236: 1093-1105.Web of ScienceGoogle Scholar

  • Shi R., Sun Y.H., Li Q., Heber S., Sederoff R. & Chiang V.L. 2010. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol. 51: 144-163.Web of ScienceGoogle Scholar

  • Singh K., Kumar S., Rani A., Gulati A. & Ahuja P.S. 2009. Phenylalanine ammonia-lyase (PAL) and cinnamate 4- hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integr. Genomics 9: 125-134.Web of ScienceCrossrefGoogle Scholar

  • Song J. & Wang Z. 2009. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (Sm- PAL1) from Salvia miltiorrhiza. Mol. Biol. Rep. 36: 939-952.Web of ScienceGoogle Scholar

  • Sun Y., Mu F., Li C., Wang W., Luo M., Fu Y. & Zu Y. 2013. Aspidin BB, a phloroglucinol derivative, induces cell cycle arrest and apoptosis in human ovarian HO-8910 cells. Chem. Biol. Interact. 204: 88-97.Web of ScienceGoogle Scholar

  • Suzuki S., Nakatsubo T., Umezawa T. & Shimada M. 2002. First in vitro norlignan formation with Asparagus officinalis enzyme preparation. Chem. Commun. (Cambridge) (10): 1088-1089.CrossrefGoogle Scholar

  • Teutsch H.G., Hasenfratz M.P., Lesot A., Stoltz C., Garnier J.M., Jeltsch J.M., Durst F. & Werck-Reichhart D. 1993. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc. Natl. Acad. Sci. USA 90: 4102-4106.Google Scholar

  • Tuan P.A., Park N.I., Li X., Xu H., Kim H.H. & Park S.U. 2010. Molecular cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in the phenylpropanoid biosynthesis pathway in garlic (Allium sativum). J. Agric. Food Chem. 58: 10911-10917. Web of ScienceGoogle Scholar

  • Wang H.R., Wang R., Xu H.L. & Zhang Y.L. 2008. Analgesic effect of Dryoperis fragrans (L.) schott. Journal of Qiqihar Medical College 29: 2443-2444.Google Scholar

  • Whitbred J.M. & Schuler M.A. 2000. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol. 124: 47-58.Google Scholar

  • Widén C.J., Fraser-Jenkins C.R., Reichstein T. & Sarvela J. 2001.A survey of phenolic compounds in Dryopteris and related fern genera. Annales Botanici Fennici 38: 99-138.Google Scholar

  • Winkel-Shirley B. 1999. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107: 142-149.Google Scholar

  • Xu H., Park N.I., Li X., Kim Y.K., Lee S.Y. & Park S.U. 2010. Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresour. Technol. 101: 9715-9722.Web of ScienceGoogle Scholar

  • Zeng S., Liu Y., Zou C., Huang W. & Wang Y. 2013. Cloning and characterization of phenylalanine ammonia-lyase in medicinal Epimedium species. Plant Cell Tissue Organ Cult. 113: 257-267.Google Scholar

  • Zhu L., CuiW., Fang Y., Liu Y., Gao X. & Zhou Z. 2013. Cloning, expression and characterization of phenylalanine ammonialyase from Rhodotorula glutinis. Biotechnol. Lett. 35: 751-756. Web of ScienceGoogle Scholar

About the article

Received: 2014-11-19

Accepted: 2015-05-02

Published Online: 2015-06-23

Published in Print: 2015-05-01


Citation Information: Biologia, Volume 70, Issue 5, Pages 606–614, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0083.

Export Citation

© 2015.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katarzyna Kabała, Magdalena Zboińska, Dorota Głowiak, Małgorzata Reda, Dagmara Jakubowska, and Małgorzata Janicka
Physiologia Plantarum, 2018
[3]
Zhou Li, Yongqun Zhu, Xiaoshuang He, Bin Yong, Yan Peng, Xinquan Zhang, Xiao Ma, Yanhong Yan, Linkai Huang, and Gang Nie
Environmental and Experimental Botany, 2018
[4]
Zhong-Guang Li, Xiong Min, and Zhi-Hao Zhou
Frontiers in Plant Science, 2016, Volume 7
[5]
Łukasz Wojtyla, Katarzyna Lechowska, Szymon Kubala, and Małgorzata Garnczarska
Frontiers in Plant Science, 2016, Volume 7

Comments (0)

Please log in or register to comment.
Log in