Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year




Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 70, Issue 6

Issues

Reproductive and cytogenetic characterization in Passiflora sublanceolata

Gabriela de O. Belo
  • Universidade Estadual de Santa Cruz (UESC), Departamento de Cięncias Biológicas, Rod. Jorge Amado, Km 16, 45662- 900, Ilhéus, Bahia, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Margarete M. Souza
  • Corresponding author
  • Universidade Estadual de Santa Cruz (UESC), Departamento de Cięncias Biológicas, Rod. Jorge Amado, Km 16, 45662- 900, Ilhéus, Bahia, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viviane de O. Souza
  • Universidade Estadual de Santa Cruz (UESC), Departamento de Cięncias Biológicas, Rod. Jorge Amado, Km 16, 45662- 900, Ilhéus, Bahia, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cláusio Antônio F. de Melo
  • Universidade Estadual de Santa Cruz (UESC), Departamento de Cięncias Biológicas, Rod. Jorge Amado, Km 16, 45662- 900, Ilhéus, Bahia, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-08 | DOI: https://doi.org/10.1515/biolog-2015-0089

Abstract

Reproductive biology (pollen-ovule ratio, pollen viability, germination in vitro pollination and stigma receptivity in vivo) and karyotype characterization by classical and molecular techniques were performed in Passiflora sublanceolata. The pollen-ovule ratio was 83.9, suggesting that this species is facultative autogamous. Pollen viability was below 70% during all anthesis period (6:00 a.m. to 12:00 p.m.). Low in vitro germination rates were observed after anthesis beginning, with none percentage at one, four and six hours and medium percentage (52.9%) at five hour. The stigma remained receptive during the whole anthesis (100%). The average fertilization percentages resulting from controlled pollinations varied between 8.4% at six hour after anthesis beginning and 50% at two and three hour. The fruit characteristics did not show significant differences by the effects of pollination time. The chromosome number was 2n = 22. The average chromosome length and the haploid chromosome length were 1.60 μm and 17.61 μm, respectively. Six CMA+3 /DAPI terminal blocks were observed. By means of the FISH technique it was found that the species presented six 45S rDNA terminal sites, two 5S rDNA sites, terminal and pericentromeric, and telomeric hybridization sites associated only to the terminal regions. Passiflora sublanceolata has great reproductive potential and cytogenetic stability as diploid plant. The results obtained in this work will assist in the use of P. sublanceolata as genitor in interspecific hybridizations with other taxa for breeding programs primarily aimed to obtain hybrids for ornamental plant market.

Keywords: fluorescent in situ hybridization; Passifloraceae; passion flower; pollen viability; stigma receptivity

References

  • Abdelgadir H.A., Johnson S.D. & Van Staden J. 2012. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S. Afr. J. Bot. 79: 132-139.Google Scholar

  • Abdullateef R.A., Zakaria N.H., Hasali N.H. & Osman M. 2012. Studies on pollen viability and germinability in accessions of Stevia rebaudiana Bertoni. Int. J. Biol. 4: 72-79.CrossrefGoogle Scholar

  • Abreu P.P., Souza M.M., Santos E.A., Pires M.V., Pires M.M. & Almeida A.-A.F. 2009. Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. Euphytica 166: 307-315.Google Scholar

  • Akamine E.K. & Girolami D.G. 1959. Pollination and fruit set in the yellow passion fruit. Hawaii Agric. Exp. Sta. 39: 1-44.Google Scholar

  • Allard R.W. 1960. Principios do melhoramento genetico de plantas, Blucher-USAID, São Paulo, 381 pp.Google Scholar

  • Alexander M.P. 1969. Differential staining of aborted and nonaborted pollen. Stain Tech. 44: 117-122.Google Scholar

  • Amela Garcia M.T. & Hoc P.S. 1997. Floral biology and reproductive system of Passiflora caerulea (Passifloraceae). Beitr. Biol. Pflanz.70: 1-20.Google Scholar

  • Amela Garcia M.T. & Hoc P.S. 1998a. Aspectos de la biologia floral y el sistema reproductivo de Passiflora mooreana (Passifloraceae). Darwiniana 35: 9-27.Google Scholar

  • Amela Garcia M.T. & Hoc P.S. 1998b. Biologia floral de Passiflora foetida (Passifloraceae). Rev. Biol. Trop. 46: 9-20.Google Scholar

  • Amela Garcia M.T., Galati B.G. & Anton A.M. 2002. Microsporogenesis, microgametogenesis and pollen morphology of Passiflora spp. (Passifloraceae). Bot. J. Linn. Soc. 139: 383-394.Google Scholar

  • Amela Garcia M.T. 2008. Breeding system and related floral features of Passiflora suberosa (Passifloraceae) under natural and experimental conditions in Argentina. Bol. Soc. Argent. Bot. 43: 83-93.Google Scholar

  • Amela Garcia M.T. & Gottsberger G. 2009. Tama´no y viabilidad del polen, relacion polen/ovulos y sistema reproductivo en cuatro especies del genero Passiflora. Bol. Soc. Argent. Bot. 44 (Supl.): 167.Google Scholar

  • Amorim J.S., Souza M.M., Viana A.J.C. & Freitas J.C.O. 2011. Self-, cross- and interspecific pollinations in Passiflora capsularis and P. rubra. Rev. Bras. Frutic. 34: 537-544.Google Scholar

  • Benevides C.R. 2006. Biologia floral e poliniza,cão de Passifloraceae nativas e cultivadas na região Norte Fluminense-RJ. Unpublished MSc. Dissertation, Universidade Estadual do Norte Fluminense Darcy Ribeiro.Google Scholar

  • Bernacci L.C., Meletti L.M.M., Soares-Scott M.D. & Passos I.R.S. 2005. Especies de maracuja: caracteriza,cão e conserva ,cão da biodiversidade, pp. 559-586. In: Faleiro F.G. Junqueira N.T.V. & Braga M.F. (eds), Maracuja: germoplasma e melhoramento genetico. Vol 1. Planaltina: Embrapa Cerrados.Google Scholar

  • Biondo E. & Battistin A. 2001. Compara,cão da efici˛encia de diferentes corantes na estimativa da viabilidade de grãos de polen em especies dos g˛eneros Eriosema (DC.) G. Don e Rhynchosia Lour (Leguminosae-Faboideae), nativas na região Sul do Brasil. Bioikos 15: 39-44.Google Scholar

  • Bowden W.M. 1945. A list of chromosome numbers in higher plants. II. Menispermaceae to Verbenaceae. Am. J. Bot. 32: 123-201.Google Scholar

  • Brito A.C., Souza J.D., Rebou,cas T.N.H. & Amaral C.L.F. 2010. Propriedades do polen e do estigma de Ocimum basilicum L. (cultivar Maria Bonita) para aumentar a efici˛encia de cruzamentos em programas de melhoramento. Rev. Bras. de Plantas Med. 12: 208-214.Google Scholar

  • Brown A.H.D. 1989. Genetic characterization of plant mating systems, pp. 145-162. In: Brown A.H.D., Clegg M.T., Kahler A.L. & Weir B.S. (eds), Plant populations genetics, breeding and genetics resources, Vol 1. Sinauer Publishing, Sunderland.Google Scholar

  • Bruckner C.H., Casali V.W.D., Moraes C.F., Regazzi A.J & Silva E.A.M. 1995. Self-incompatibility in passion fruit (Passiflora edulis Sims). Acta Hortic. 370: 45-57.Google Scholar

  • Bruckner C.H. & Otoni W.C. 1999. Hibrida,cão em maracuja, pp. 379-399. In: Borem A. (ed.), Hibrida,cão artificial de plantas. Vol 1. Universidade Federal de Vi,cosa, Vi,cosa.Google Scholar

  • Bruckner C.H., Silva M.M., Falleiro T.M., Andrade B.B. & Moreira A.E. 2000. Viabilidade do polen de maracujazeiro sob diferentes condi,c˜oes de armazenamento. Rev. Ceres 47: 523-531.Google Scholar

  • Cervi A.C. 2005. Especies de Passiflora L. (Passifloraceae) publicadas e descritas nos ultimos 55 anos (1950-2005) na America do Sul e principais publica,c˜oes brasileiras. Estud. de Biol. 27: 19-24.Google Scholar

  • Coelho A.P.D, Morais K.P., Dail Laughinghouse I.V.H., Giacomini S.J. & Tadesco S.B. 2012. Pollen grain viability in accessions of Crotalaria juncea L. (Fabaceae). Agroci˛encia 46: 481-487.Google Scholar

  • Cruden R.W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32-46.CrossrefGoogle Scholar

  • Cruz C.D. 2006. Estatistica experimental e matrizes. Universidade Federal de Vi,cosa, Vi,cosa, 285 pp.Google Scholar

  • Cruz T.V., Roza F.A., Viana A.J.C., Belo G.O., Fonseca J.W.S. & Souza M.M. 2008. Germina,cão in vitro de grãos de polen em Passiflora suberosa para sua utiliza,cão em hibrida,cão interespecifica. Rev. Bras. Frutic. 30: 875-879.CrossrefGoogle Scholar

  • Dafni A. 1992. Pollination ecology: a practical approach, Oxford University Press, New York.Google Scholar

  • Dafni A., Pacini E. & Nepi M. 2005. Pollen and stigma biology, pp. 83-146. In: Dafni A. & Kevan H.B.C. (eds), Practical pollination biology, Vol 1. NHBS, Cambridge.Google Scholar

  • De Jong T. & Klinkhamer P.G.L. 2005. Evolutionary ecology of plant reproductive strategies, Cambridge University Press, Cambridge.Google Scholar

  • Dumas C. & Knox R.B. 1983. Callose e determination of pistil viability and incompatibility. Theor. Appl. Gen. 67: 1-10.CrossrefGoogle Scholar

  • Fajkus J., Sykorova E. & Leitch A.R. 2005. Techniques in plant telomere biology. BioTechniques 38: 233-243.CrossrefGoogle Scholar

  • Ferreira F.R. 1994. Germoplasma de Passiflora no Brasil, pp. 24-26. In: São Jose A.R. (ed.), Maracuja: produ,cão e mercado. UESB, Vitoria da Conquista/BA.Google Scholar

  • Frazon R.C., Corr˛ea E.R. & Raseira M.C.B. 2005. In vitro pollen germination of feijoa (Acca sellowiana (Berg) Burret). Crop. Breed. Appl. Biot. 5: 229-233.CrossrefGoogle Scholar

  • Fuchs J., Brandes A. & Schubert I. 1995. Telomere sequence localization and karyotype evolution in higher plants. Plant. Syst. Evol. 196: 227-241.Google Scholar

  • Galen C. & Plowright R.C .1987. Testing the accuracy of using peroxidase activity to indicate stigma receptivity. Can. J. Bot. 65: 107-111.CrossrefGoogle Scholar

  • Gaude T. & McCormick S. 1999. Signaling in pollen-pistil interactions. Cell Dev. Biol. 10: 139-147.CrossrefGoogle Scholar

  • Guerra M. & Souza M.J. 2002. Como observar cromossomos - um guia de tecnicas em citogenetica vegetal, animal e humana, FUPEC, Ribeirão Preto, 131 pp.Google Scholar

  • Harvey M.J. 1966. IOPB - Chromosome number reports VII. Taxon 15: 155-163.Google Scholar

  • Herbario IAC 2013. http://herbario.iac.sp.gov.br/Relatorios/Listagens/LExtincao.asp. (accessed 31/03/2013).Google Scholar

  • Heslop-Harrison J. & Heslop-Harrison Y. 1970. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain. Technol. 45: 115-120.Google Scholar

  • Heitz E. 1927. Pflanzliche chromosomen-zahlen. Tab. Biol. 4: 1-83.Google Scholar

  • Hoagland D.R. & Arnon D.I. 1950. The water-culture method for growing plants without soil. Calif. Aes. 347: 1-32.Google Scholar

  • Iapichino G.F. & Loy J.B. 1987. High temperature stress affects pollen viability in bottle gourd. J. Am. Soc. Hortic. Sci. 112: 372-374.Google Scholar

  • Janaki Ammal E.K. 1945. Chromosome atlas of cultivated plants, p. 114. In: Darlington C.D. & Janaki Ammal. E.K. (eds), George Allen and Unwin Ltd. Vol 1. London.Google Scholar

  • Johansen D.A. 1940. Plant microtechnique, McGraw Hill, New York.Google Scholar

  • Kearns C.A. & Inouye D.W. 1993. Techniques for pollination biologists. Colorado University Press, Niwot, 583 pp.Google Scholar

  • Lederman I.E. 1987. The involvement of ethylene in fruit development, maturation and ripening of the passion fruit, Passiflora edulis Sims, The Hebrew University of Jerusalem, Jerusalem, 280 pp.Google Scholar

  • Leitch A.R., Schwarzacher T., Jackson D. & Leitch I.J. 1994. In situ hybridization: a practical guide. BIOS Scientific Publishers Limited, Oxford, 118 pp.Google Scholar

  • Lersten N.R. 2004. Flowering plant embryology, Blackwell Publishing, Ames.Google Scholar

  • Loguercio A.P. & Battistin A. 2004. Microsporog˛enese de nove acessos de Syzygium cumini (L.) Myrtaceae e oriundos do Rio Grande do Sul- Brasil. Rev. da FZVA 11: 192-205.Google Scholar

  • Manju I. & Rawat S.S. 2006. Studies on floral biology of Kagzi lime (Citrus aurantifolia Swingle) under valley conditions of Garhwal Himalaya. Adv. Plant Sci.19: 11-17.Google Scholar

  • Meletti L.M.M., Bernacci L.C., Soares-Scott M.D. & Passos I.R.S. 2005. Melhoramento genetico do maracuja: passado e futuro, pp. 55-78. In: Faleiro F.G., Junqueira N.T.V. & Braga M.F. (eds), Maracuja: germoplasma e melhoramento genetico. Vol 1. Embrapa Cerrados, Planaltina/DF.Google Scholar

  • Melo N.F., Cervi A.C. & Guerra M. 2001. Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Syst. Evol. 226: 69-84.CrossrefGoogle Scholar

  • Melo N.F. & Guerra M. 2003. Variability of the 5S and 45S rDNA sites in Passiflora L. with species with distinct base chromosome numbers. Ann. Bot., London 92: 309-316.Google Scholar

  • Melo C.A.F., Souza M.M., Abreu P.P. & Viana A.J.C. 2014. Karyomorphology and GC-rich heterochromatin pattern in Passiflora (Passifloraceae) wild species from Decaloba and Passiflora subgenera. Flora. 209: 620-631.CrossrefGoogle Scholar

  • Menzel C.M.,Winks C.W. & Simpson D.R. 1989. Passion fruit in Queensland. 3. Orchard management. Queensl. Agr. J. 115: 155-164. Google Scholar

  • Pearse A.G.E. 1972. Histochemistry, theoretical and applied, Churchill, London. Ramos J.D., Chalfun N.N.J., Pasqual M. & Rufini J.C.M. 2002. Produ,cão de mudas de plantas frutiferas por semente. Inf. Agropec. 23: 64-72.Google Scholar

  • Rojas G.G. & Medina V.M. 1996. Vingamento de frutos do maracujazeiro amarelo. Rev. Bras. Frutic.18: 283-288.Google Scholar

  • Santos E.A., Souza M.M., Abreu P.P., Concei,cão L.D.H.C.S., Araujo I.S., Viana A.P., Almeida A.-A .F. & Freitas J.C.O. 2012. Confirmation and characterization of interspecific hybrids of Passiflora L. Euphytica 184: 389-399.Google Scholar

  • Silva M.M., Bruckner C.H., Pican,co M. & Cruz C.D. 1999. Fatores que afetam a germina,cão do grão de polen do maracuja amarelo: meios de cultura e tipos de agrotoxicos. Pesq. Agropec. Bras. 34: 347-352.CrossrefGoogle Scholar

  • Singh R.J. 2002. Plant cytogenetics, CRC Press, Florida, 512 pp.Google Scholar

  • Sousa, J.S.I. & Meletti, L.M.M. 1997. Maracuja: especies, variedades e cultivo, FEALQ, Piracicaba, 179 pp.Google Scholar

  • Souza M.M., Pereira T.N.S. & Martins E.R. 2002. Microsporog˛enese e microgametog˛enese associadas ao tamanho do botão floral e da antera e viabilidade polinica em maracujazeiroamarelo (Passiflora edulis Sims f. flavicarpa Degener). Ci˛enc. Agrotec. 26: 1209-1217.Google Scholar

  • Souza M.M., Pereira T.N.S., Viana A.P., Pereira M.G., Bernacci L.C., Sudre C.P. & Silva L.C. 2003. Meiotic irregularities and pollen viability in Passiflora edmundoi Sacco (Passifloracaeae). Caryologia 56: 161-169.CrossrefGoogle Scholar

  • Souza M.M., Pereira T.N.S., Viana A.P., Pereira M.G., Amaral Jr A.T. & Madureira H.C. 2004a. Flower receptivity and fruit characteristics associated to time of pollination in the yellow passion fruit Passiflora edulis Sims f. flavicarpa Degener (Passifloracaeae). Sci. Hortic. Amsterdam 101: 373-385.Google Scholar

  • Souza M.M., Pereira T.N.S., Viana A.P., Silva L.C. & Sudre C.P. 2004b. Pollen viability and fertility in wild and cultivated Passiflora species (Passifloraceae). Beitr. Biol. Pflanz. 73: 1-18.Google Scholar

  • Souza M.M., Palomino G., Pereira T.N.S., Pereira M.G. & Viana A.P. 2004c. Flow cytometric analysis of genome length variation in some Passiflora species. Hereditas 141: 31-38.Google Scholar

  • Souza M.M., Pereira T.N.S. & Vieira M.L.C. 2008. Cytogenetic studies in some species of Passiflora L. (Passifloraceae): a review emphasizing Brazilian species. Braz. Arch. Biol. Techn. 51: 247-258.CrossrefGoogle Scholar

  • Souza M.M., Urdampilleta J.D. & Forni-Martins E.R. 2010. Improvements in cytological preparations for fluorescent in situ hybridization in Passiflora. Genet. Mol. Res. 9: 2148-2155.CrossrefGoogle Scholar

  • Twell D. 1995. Diphtheria toxin-mediated cell ablation in developing pollen: vegetative cell ablation blocks generative cell migration. Protoplasma 187: 144-154.Google Scholar

  • Ulmer T. & MacDougal J.M. 2004. Passiflora - Passionflowers of the world, Timber Press, Portland, 430 pp.Google Scholar

  • Vanderplank J. 2000. Passion flowers, 3rd ed., the MIT Press, Cambridge, 224 pp.Google Scholar

  • Viana A.P., Pereira T.N.S., Pereira M.G., Souza M.M., Maldonado J.F.M. & Amaral Jr A.T. 2003. Genetic diversity among yellow passion fruit commercial genotypes and among Passifloras species using RAPD. Rev. Bras. Frutic. 25: 489-493.CrossrefGoogle Scholar

  • Viana A.J.C. & Souza M.M. 2012. Comparative cytogenetic between the species Passiflora edulis and Passiflora cacaoensis. Plant Biol.14: 820-827.CrossrefGoogle Scholar

  • Westgate M.E., Lizaso J. & Batchelor W. 2003. Quantitative relationships between pollen shed density and grain yield in maize. Crop. Sci. 43: 934-942.CrossrefGoogle Scholar

  • Yotoko K.S.C., Dornelas M.C., Togni P.D., Fonseca T.C., Salzano F.M., Bonatto S.L. & Freitas L.B. 2011. Does variation in genome sizes reflect adaptive or neutral processes? New clues from Passiflora. PLoS ONE 6(3): e18212. doi:10.1371/journal.pone.0018212CrossrefGoogle Scholar

About the article

Received: 2014-10-11

Accepted: 2015-05-29

Published Online: 2016-01-08

Published in Print: 2015-06-01


Citation Information: Biologia, Volume 70, Issue 6, Pages 733–743, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0089.

Export Citation

© 2016.Get Permission

Comments (0)

Please log in or register to comment.
Log in