Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 70, Issue 6

Issues

Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion

Natália Raschmanová
  • Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-04001 Košice, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dana Miklisová / Ľubomír Kováč
  • Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-04001 Košice, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimír Šustr
  • Institute of Soil Biology, Biology Centre AS CR v. v. i.„ Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-08 | DOI: https://doi.org/10.1515/biolog-2015-0095

Abstract

The study compared communities of soil Collembola along the inversed microclimatic gradient of the collapse doline of the Silicka ľadnica Ice Cave (Slovakia) in spring and autumn of 2005. Kruskal-Wallis ANOVA and the Mann- Whitney test revealed significant differences in abundance between sites and both seasons. Significantly higher abundance means and species richness were observed at most sites during the spring compared with the autumn. NMS ordination documented a clear delimitation of communities with remarkably different soil microclimates. The community pattern of the coldest section of the gradient, with low species richness and high mean abundance, was analogous to communities living in the harsh alpine and polar soils. The collapse doline with inversed microclimate hosted a high number of species (72) and a broad variety of montane forms (13), thus documenting that these karst landforms enhance local diversity of edaphic Collembola and serve as local refugia of specialized cold-tolerant species. The cold tolerance of the four abundant species at the doline cold sites, namely Ceratophysella sigillata, Tetrodontophora bielanensis, Protaphorura armata and Desoria tigrina, was tested in the laboratory using one-hour exposition survival tests. Within a temperature range from -2.4 to -7.8◦C, T. bielanensis was the most cold-sensitive species, with a lethal dose LD50 of -4.4◦C, while D. tigrina was the most cold-resistant, showing LD50 of -5.8◦C.

Keywords: soil Collembola; microclimatic gradient; collapse doline; cold tolerance; karst landform

References

  • Bahrndorff S., Holmstrup M., Petersen H. & Loeschcke V. 2006. Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. J. Insect Physiol. 52 (9): 951-959. DOI: 10.1016/j.jinsphys.2006.06.005CrossrefGoogle Scholar

  • Bahrndorff S., Loeschcke V., Pertoldi C., Beier C. & Holmstrup M. 2009. The rapid cold hardening response of Collembola is influenced by thermal variability in the habitat. Funct. Ecol. 23: 340-347. DOI: 10.1111/j.1365-2435.2008.01503.x CrossrefGoogle Scholar

  • Bárta J. 1995. Pomoc archeologie pri datovani zaľadnenia Silickej ľadnice [Archeology assistence at dating of the Silicka ľadnica cave glaciation], pp. 81-84. In: Bella P. (ed.), Proc. workshop Dobšinska Ice Cave, 21-22 September 1995. Sprava slovenskych jaskyň, Liptovsky Mikulaš, 96 pp. ISBN:80-88723-23-X Google Scholar

  • Bátori Z., Csiky J., Erd˝os L., Morschhauser T., Török P. & Körmöczi L. 2009. Vegetation of the dolines in Mecsek Mountains (South Hungary) in relation to the local plant communities. Acta Carsol. 38 (2-3): 237-252. DOI: http://dx.doi.org/10.3986/ac.v38i2-3.125CrossrefGoogle Scholar

  • Bátori Z., Csiky J., Farkas T., Vojtko A.E., Erd˝os L., Kovacs D., Wirth T., Körmöczi L. & Vojtko A. 2014. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. Int. J. Speleol. 43 (1): 15-26. DOI: 10.5038/1827-806X.43.1.2CrossrefGoogle Scholar

  • Bauer R. & Christian E. 1993. Adaptations of three springtail species to granite boulder habitats (Collembola). Pedobiologia 37: 280-290.Google Scholar

  • Birkemoe T. & Leinaas H. 2000. Effects of temperature on the development of an arctic Collembola (Hypogastrura tullbergi). Funct. Ecol. 14 (6): 693-700. DOI: 10.1046/j.1365-2435.2000.00478.x CrossrefGoogle Scholar

  • Block W., Webb N.R., Coulson S., Hodkinson I.D. & Worland M.R. 1994. Thermal adaptation in the Arctic collembolan Onychiurus arcticus (Tullberg). J. Insect Physiol. 40 (8): 715-722. DOI: 10.1016/0022-1910(94)90099-X CrossrefGoogle Scholar

  • Block W. & Zettel J. 2003. Activity and dormancy in relation to body water and cold tolerance in a winter active springtail (Collembola). Eur. J. Entomol. 100 (3): 305-312. DOI: 10.14411/eje.2003.049CrossrefGoogle Scholar

  • Choi W.I., Ryoo M.I. & Kim J.G. 2002. Biology of Paronychiurus kimi (Collembola: Onychiuridae) under the influence of temperature, humidity and nutrition. Pedobiologia 46 (6): 548-557. DOI: 10.1078/0031-4056-00159CrossrefGoogle Scholar

  • Crossley D. A. & Blair J. M. 1991. A high efficiency, “lowtechnology” Tullgren-type extractor for soil microarthropods. Agric. Ecosyst. Environ. 34 (1-4): 187-192. DOI: 10.1016/0167-8809(91)90104-6CrossrefGoogle Scholar

  • Čarnogursky J. 1994. Chvostoskoky (Collembola), pp. 154-157. In: Rozložnik M. & Karasova E. (eds), Slovensky kras, chranena krajinna oblasť - biosfericka rezervacia. Osveta, Martin, 476 pp. ISBN: 80-217-0211-7Google Scholar

  • Dunger W. & Schlitt B. 2011. Tullbergiidae. Synopses on Palaearctic Collembola, vol. 6/1. Soil Organisms 83 (1): 1-168. Gams I. 2004. Kras v sloveniji v prostoru in času [Karst in Slovenia in space and time]. Inštitut za raziskovanje krasa ZRC SAZU. Ljubljana, 515 pp. ISBN: 9616500465, 9789616500463Google Scholar

  • Gulička J. 1985. Podna a jaskynna makrofauna krasovych pohori zapadnych Karpat (I.) [Soil and cave macrofauna of karst mountains of the Western Carpathian]. Slovensky kras (Acta Carsol Slov.) 23: 89-129.Google Scholar

  • Hasegawa M. 2002. The response of collembolan community to the amount and composition of organic matter of a forest. Pedobiologia 46 (3-4): 353-364. DOI: 10.1078/0031-4056-00143CrossrefGoogle Scholar

  • Hawes T.C., Couldridge C.E., Bale J.S. & Worland M.R. 2006. Habitat temperature and the temporal scaling of cold hardening in the high Arctic collembolan, Hypogastrura tullbergi (Schäffer). Ecol. Entomol. 31 (5): 450-459. DOI: 10.1111/j.1365-2311.2006.00796.x Hill T. & Lewicki P. 2006. Statistics: Methods and applications; a comprehensive reference for science, Industry, and Data Mining. StatSoft, Tulsa, 832 pp. ISBN: 1884233597, 978188423359CrossrefGoogle Scholar

  • Hopkin S. P. 1997. The biology of springtails (Insecta: Collembola). Oxford University Press, 330 pp. ISBN: 0-19-854084-1Google Scholar

  • Kaluz S. 1993a. Podne roztoče (Acarina) v podmienkach teplotnej inverzie chraneneho prirodneho vytvoru Silicka ľadnica [Soil mites /Acarina/ in the conditions of thermoinversion in the natural phenomenon the Silicka ľadnica ice-cellar]. Ochrana prirody - Naturae Tutela 2: 65-80.Google Scholar

  • Kaluz S. 1993b. Veigaia inexpectata sp. n. (Acarina, Veigaiaidae), a new gamasid mite from Slovak Republic. Biologia 48 (5): 507-510.Google Scholar

  • Kovač Ľ., Elhottova D., Mock A., Novakova A., Krištůfek V., Chroňakova A., Lukešova A., Mulec J., Košel V., Papač V., Ľuptačik P., Uhrin M., Višňovska Z., Hudec I., Gaal Ľ. & Bella P. 2014. The cave biota of Slovakia. State Nature Conservancy SR, Slovak Caves Administration, Liptovsky Mikulaš, 192 pp. ISBN: 978-80-89310-73-9Google Scholar

  • Kovač Ľ., Kosturova N. & Miklisova D. 2005. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak woods and Pinus nigra plantations in the Slovak Karst (Slovakia). Pedobiologia 49 (1): 29-40. DOI:10. 1016/j.pedobi.2004.07.009CrossrefGoogle Scholar

  • Kuznetsova N.A. & Krestyaninova A.I. 1998. Dynamics of springtail communities (Collembola) in hydrological series of pine forests in southern taiga. Entomol. Rev. 78 (8): 969-981.Google Scholar

  • McCune B. & Grace J.B. 2002. Analysis of Ecological Communities, MjM Software Design, Oregon, U.S.A, 304 pp. DOI: 10.1016/S0022-0981(03)00091-1, ISBN-10: 0972129006, ISBN-13: 978-0972129008CrossrefGoogle Scholar

  • McCune B. & Mefford M.J. 2011. PC-ORD. Multivariate Analysis of Ecological Data. Version 6.07 MjM Software, Gleneden Beach, Oregon, U.S.A., 28 pp.Google Scholar

  • Müller G. 1965. Boden-Biologie. Veb Gustav Fisher Verlag Jena, 889 pp.Google Scholar

  • Novak T., Šajna N., Antolinc E., Lipovšek S., Devetak D. & Janžekovič F. 2014. Cold tolerance in terrestrial invertebrates inhabiting subterranean habitats. Int. J. Speleol. 43 (3): 265-272. DOI: org/10.5038/1827-806X.43.3.3Google Scholar

  • Petrasek J., Krištůfek V. & Elhottova D. 2010. Mikrobialni charakteristiky v přirozenem teplotnim gradientu propasti Silicka Ľadnica, NP Slovensky kras [Microbial characteristics in the natural temperature gradient of the Silicka Ľadnica ice Cave]. Phytopedon 9 (1): 27-34.Google Scholar

  • Pomorski R. J. 1998. Onychiurinae of Poland (Collembola, Onychiurinae). Polish Taxonomical Society, Wroclaw, 201 pp. ISBN: 839098041X Google Scholar

  • Potapov M. 2001. Isotomidae. In: Dunger W. (ed.), Synopses on Palaearctic Collembola, Vol. 3, Abh. Ber. Naturkundemuseums. Görlitz 73 (2): 1-603.Google Scholar

  • Rajman L., Roda Š., Roda Š. ml & Ščuka J. 1987. Termodynamicky režim Silickej ľadnice [The Silicka ľadnica Ice Cave thermodynamical regime]. Slovensky kras (Acta Carsol. Slov.) 25: 29-63.Google Scholar

  • Raschmanova N., Kovač Ľ. & Miklisova D. 2008. The effect of mesoclimate on Collembola diversity in the Zadiel Valley, Slovak Karst (Slovakia). Eur. J. Soil Biol. 44 (5-6): 463-472. DOI: 10.1016/j.ejsobi.2008.07.005CrossrefGoogle Scholar

  • Raschmanova N., Miklisova D. & Kovač Ľ. 2013. Soil Collembola communities along a steep microclimatic gradient in the collapse doline of the Silicka ľadnica Cave, Slovak Karst (Slovakia). Biologia 68 (3): 470-478. DOI: 10.2478/s11756-013-0172-8CrossrefGoogle Scholar

  • Rozložnik M., Sz˝oll˝os F., Uhrin M. & Karasova E. 1994. Slovensky kras - Slovak Karst Biosphere Reserve, pp. 113-128. In: Jenik J. & Price F. (eds), Biosphere Reserves on the Crossroads of Central Europe, Czech Republic - lovak Republic. Czech National Committee for UNESCO MAB programme, Empora, Prague, 168 pp. ISBN: 8085779196, 9788085779196Google Scholar

  • Rusek J. 1997. Tetrodontophora bielanensis (Collembola: Onychiuridae), its distribution and ecological requirements. Pedobiologia 41:74-79.Google Scholar

  • Russell D.J., Schulz H.J., Hohberg K. & Pfanz H. 2011. Occurrence of collembolan fauna in mofette fields (natural carbon -dioxide springs) of the Czech Republic. Soil Organisms 83 (3): 489-505.Google Scholar

  • Sauro U. 2013. Landforms of mountainous karst in the middle latitudes: reflections, trends and research problems. Acta Carsol. 42 (1): 5-16. DOI: 10.3986/ac.v42i1.629CrossrefGoogle Scholar

  • Schlaghamersky J., Devetter M., Haňel L., Tajovsky K., Stary J., Tuf I.H. & Pižl V. 2014. Soil fauna across Central European sandstone ravines withtemperature inversion: From cool and shady to dry and hot places. Appl. Soil Ecol. 83: 30-38. DOI: 10.1016/j.apsoil.2013.11.014CrossrefGoogle Scholar

  • Sinclair B.J. & Sjursen H. 2001. Cold tolerance of the Antarctic springtail omphiocephalus hodgsoni (Collembola, Hypogastruridae). Antarct. Sci. 13 (3): 271-279. DOI: 10.1017/ S0954102001000384CrossrefGoogle Scholar

  • Sjursen H. & Holmstrup M. 2004. Cold and drought stress in combination with pyrene exposure: studies with Protaphorura armata (Collembola: Onychiuridae). Ecotoxicol. Environ. Saf. 57 (2): 145-152. DOI: 10.1016/S0147-6513(02)00144-6CrossrefGoogle Scholar

  • StatSoft, Inc. (2009). STATISTICA (data analysis software system), version 9.0. www.statsoft.com Šustr V. 1996. Influence of temperature acclimation on respiration- temperature relationship in Tetrodontophora bielanensis (collembola: Onychiuridea). Eur. J. Entomol. 93: 435-442.Google Scholar

  • Šustr V. & BlockW. 1998. Temperature dependence and acclimatory response of amylase in the High Arctic springtail Onychiurus arcticus (Tullberg) compared with the temperate species Protaphorura armata (Tullberg). J. Insect Physiol. 44 (10): 991-999. DOI: 10.1016/S0022-1910(97)00174-1 CrossrefGoogle Scholar

  • Šustr V. & Šimek M. 1994. Environmental factors influencing respiration of the stenothermic collembolan Tetrodontophora bielanensis (Entognatha, Collembola). Pedobiologia 38: 63-71.Google Scholar

  • Thibaud J.-M., Schulz H.-J. & Gama Assalino M.M. 2004. Hypogastruridae. In: Dunger W. (ed.), Synopses on Palaearctic Collembola, Vol. 4, Abh. Ber. Naturkundemus. Görlitz 75 (2): 1-287.Google Scholar

  • Traser Gy. 1999. Springtails of the Aggtelek National Park (Hexapoda: Collembola), pp. 49-59. In: Mahunka S. (ed.), The fauna of the Aggtelek National Park, Akademiai Kiado, Budapest, 371 pp. ISBN: 963-7093-64-8Google Scholar

  • Vannier G. 1994. The thermobiological limits of some freezing intolerant insects. The supercooling and thermostupor points. Acta Oecol. 15 (1): 31-42.Google Scholar

  • Venables W.N. & Smith D.M. 2009. An introducttion to R. 2nd ed. Network Theory Ltd. Bristol, 138 pp. ISBN: 0-9546120-8-6Google Scholar

  • Verhoef H.A. 1995. Animal ecophysiology: cornerstone for soil ecosystem studies as exemplified by studies on arthropods. Acta Zool. Fenn. 196: 176-182.Google Scholar

  • Vilisics F., Solymos P., Nagy A., Farkas R., Kemencei Z. & Hornung E. 2011. Small scale gradient effects on isopods (Crustacea: Oniscidea) in karstic sinkholes. Biologia 66 (3): 499-505. DOI: 10.2478/s11756-011-0042-1CrossrefGoogle Scholar

  • Wallwork J.A. 1970. Ecology of soil animals. McGraw-Hill, London, 284 pp. ISBN: 0070941254Google Scholar

  • Wallwork J.A. 1976. The distribution and diversity of soil fauna. Academic Press, London, 356 pp. ISBN: 0127333509, 9780127333502Google Scholar

  • Weiner W.M. 1981. Collembola of the Pieniny National Park in Poland. Acta Zool. Cracov. 25 (18): 417-500.Google Scholar

  • Winkler D. & Traser G.N. 2012. Explanation of the European Lepidocyrtus pallidus-serbicus group (Collembola, Entomobryidae), with description of new species from Hungary. Zootaxa 3394: 35-47.Google Scholar

  • Worland M.R. 1996. The relationship between water content andcold tolerance in the arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae), Eur. J. Entomol. 93: 341-348.Google Scholar

  • Woude H.A. van der 1987. Seasonal changes in cold hardiness of temperate Collembola. Oikos 50 (2): 231-238. DOI: 10.2307/3566006CrossrefGoogle Scholar

  • Zettel J. 1984. Cold hardiness strategies and thermal hysteresis in Collembola. Rev. Ecol. Biol. Sol 21: 189-203.Google Scholar

  • Zettel J. 1999/2000. Alpine Collembola - adaptations and strategies for survival in harsh environments. Zoology (Analysis of complex systems) 102 (2-3): 73-89.Google Scholar

  • Zettel J. & Zettel U. 1994a. Development, phenology and surface activity of Ceratophysella sigillata (Uzel) (Collembola, Hypogastruridae). Acta Zool. Fenn. 195: 150-153.Google Scholar

  • Zettel J. & Zettel U. 1994b. Seasonal and reproductional polymorphism in Ceratophysella sigillata (Uzel) (Collembola, Hypogastruridae). Acta Zool. Fenn. 195: 154-156.Google Scholar

About the article

Received: 2015-01-20

Accepted: 2015-05-04

Published Online: 2016-01-08

Published in Print: 2015-06-01


Citation Information: Biologia, Volume 70, Issue 6, Pages 802–811, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0095.

Export Citation

© 2016.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zoltán Bátori, András Vojtkó, Gunnar Keppel, Csaba Tölgyesi, Andraž Čarni, Matija Zorn, Tünde Farkas, László Erdős, Péter János Kiss, Gábor Módra, and Mateja Breg Valjavec
Biodiversity and Conservation, 2019
[2]
Stefano Mammola, Elena Piano, Florian Malard, Philippe Vernon, Marco Isaia, and Enrico Rezende
Functional Ecology, 2019, Volume 33, Number 9, Page 1638
[3]
Stefano Mammola, Elena Piano, Pedro Cardoso, Philippe Vernon, David Domínguez-Villar, David C Culver, Tanja Pipan, and Marco Isaia
The Anthropocene Review, 2019, Volume 6, Number 1-2, Page 98
[4]
Zoltán Bátori, András Vojtkó, István Elek Maák, Gábor Lőrinczi, Tünde Farkas, Noémi Kántor, Eszter Tanács, Péter János Kiss, Orsolya Juhász, Gábor Módra, Csaba Tölgyesi, László Erdős, Dianne Joy Aguilon, and Gunnar Keppel
Scientific Reports, 2019, Volume 9, Number 1
[5]
Natália Raschmanová, Vladimír Šustr, Ľubomír Kováč, Andrea Parimuchová, and Miloslav Devetter
Journal of Thermal Biology, 2018
[6]
Yuqiao Su, Qiming Tang, Fuyan Mo, and Yuegui Xue
Scientific Reports, 2017, Volume 7, Number 1
[7]
Natália Raschmanová, Martina Žurovcová, Ľubomír Kováč, Lenka Paučulová, Vladimír Šustr, Andrea Jarošová, and Daniela Chundelová
Journal of Zoological Systematics and Evolutionary Research, 2017, Volume 55, Number 1, Page 19
[8]
Jichao Sun, Qian Liao, and Guangqian Wang
Optik - International Journal for Light and Electron Optics, 2016, Volume 127, Number 8, Page 3834

Comments (0)

Please log in or register to comment.
Log in