Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

See all formats and pricing
More options …
Volume 70, Issue 8


Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana

José L. Rodríguez
  • Corresponding author
  • Departamento de Bioquímica y Biología Molecular, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain / IRNASA-CSIC, Cordel de Merinas, 40, 37080 Salamanca, Spain / Plant Developmental Genetics, Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juana G. De Diego
  • Departamento de Bioquímica y Biología Molecular, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisco D. Rodríguez
  • Departamento de Bioquímica y Biología Molecular, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emilio Cervantes
Published Online: 2016-01-08 | DOI: https://doi.org/10.1515/biolog-2015-0130


Mitochondrial morphology and evolution have been observed during seed germination and early seedling development in Arabidopsis thaliana line 43a9 (ecotype Columbia) expressing green fluorescent protein in these organelles. Fluorescence, confocal and electronic microscopy images reveal that mitochondrial development goes through different stages, and that the organelle structure varies with cell types during these processes. Mitochondria develop from larger, isodiametric structures pre-existent in the dry seed called promitochondria. After germination, variations in mitochondrial morphology occur synchronously with cell differentiation and cell division in the course of early root development. Some promitochondria develop into intermediate structures resembling the syncytial organelles. These structures have been described in certain plants under hypoxia as intermediates for the formation of mature mitochondria. On the other hand, other promitochondria temporarily remain in the cells of the root apex

This article offers supplementary material which is provided at the end of the article.

Keywords: Arabidopsis; confocal microscopy; germination; Mitotracker; promitochondria


  • Attucci S., Carde J.P., Raymond P., Saint-Gès V., Spiteri A. & Pradet A. 1991. Oxidative phosphorylation by mitochondria extracted from dry sunflower seeds. Plant Physiol. 95: 390-398.Google Scholar

  • Barrôco R.M., Van Poucke K., Bergervoet J.H.W., De Veylder L., Groot S.P.C., Inzé D. & Engler G. 2005. The role of the cell cycle machinery in resumption of postembryonic development.Google Scholar

  • Plant Physiol. 137: 127-140.Google Scholar

  • Bewley J.D. 1997. Seed germination and dormancy. Plant Cell 9: 1055-1066.CrossrefGoogle Scholar

  • Bewley J.D. & Black M. 1994. Seeds: Physiology of Development and Germination, Plenum Press, New York, NY.Google Scholar

  • Carrie C., Murcha M.W., Giraud E., Ng S., Zhang M.F., Narsai R. & Whelan J. 2013. How do plants make mitochondria? Planta 237: 429-439.Web of ScienceGoogle Scholar

  • Cervantes E., Javier Martín J., Ardanuy R., de Diego J.G. & Tocino Á. 2010. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant Physiol. 167: 408-410.Web of ScienceGoogle Scholar

  • Colón-Carmona A., You R., Haimovitch-Gal T. & Doerner P.Google Scholar

  • 1999. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20: 503-508. de Diego J.G., David Rodriguez F., Rodríguez Lorenzo J.L. & Cervantes E. 2007. The prohibitin genes in Arabidopsis thaliana: expression in seeds, hormonal regulation and possible role in cell cycle control during seed germination. J. Plant Physiol. 164: 371-373. de Diego J.G., Rodríguez F.D., Rodríguez J.L., Cervantes E. & P.G. 2006. cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences.Google Scholar

  • J. Plant Physiol. 163: 452-462.Google Scholar

  • Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J. & Job D. 2002. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth.Google Scholar

  • Physiol. Plant 116: 238-247.Google Scholar

  • Hiramatsu T., Misumi O., Kuroiwa T. & Nakamura S. 2006.Google Scholar

  • Morphological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. J. Phycol. 42: 1048-1058.Google Scholar

  • Howell K.A., Millar A.H. & Whelan J. 2006. Ordered assembly of mitochondria during rice germination begins with promitochondrial structures rich in components of the protein import apparatus. Plant Mol. Biol. 60: 201-223.Google Scholar

  • Howell K.A., Millar A.H. & Whelan J. 2007. Building the powerhouse: what are the signals involved in plant mitochondrial biogenesis? Plant Signal. Behav. 2: 428-430.Google Scholar

  • Koornneef M. & Meinke D. 2010. The development of Arabidopsis as a model plant. Plant J. 61: 909-921.Google Scholar

  • Li P., Jiao J., Gao G. & Prabhakar B.S. 2012. Control of mitochondrial activity by miRNAs. J. Cell. Biochem. 113: 1104-1110.Google Scholar

  • Logan D.C. 2010. The dynamic plant chondriome. Semin. Cell Dev. Biol. 21: 550-557.Web of ScienceGoogle Scholar

  • Logan D.C. & Leaver C.J. 2000. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J. Exp. Bot. 51: 865-871.Google Scholar

  • Logan D.C., Millar A.H., Sweetlove L.J., Hill S.A. & Leaver C.J.Google Scholar

  • 2001. Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 125: 662-672.Google Scholar

  • Martín J.J., Tocino Á., Ardanuy R., Juana G. & Cervantes E.Google Scholar

  • 2014. Dynamic analysis of Arabidopsis seed shape reveals differences in cellulose mutants. Acta Physiol. Plant. 36: 1585-1592.Web of ScienceGoogle Scholar

  • Merkwirth C. & Langer T. 2009. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim. Biophys. Acta 1793: 27-32.Web of ScienceGoogle Scholar

  • Oparka K.J., Gates P.J. & Boulter D. 1981. Regularly aligned mitochondria in aleurone and sub-aleurone layers of developing rice caryopses. Plant Cell Environ 4: 355-357.CrossrefGoogle Scholar

  • Ramonell K.M., Kuang A., Porterfield D.M., Crispi M.L., Xiao Y., McClure G. & Musgrave M.E. 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24: 419-428.Google Scholar

  • Rolletschek H., Borisjuk L., Koschorreck M., Wobus U. & Weber H. 2002. Legume embryos develop in a hypoxic environment.Google Scholar

  • J. Exp. Bot. 53: 1099-1107.Google Scholar

  • Rosenfeld E., Schaeffer J., Beauvoit B. & Salmon J.M. 2004.Google Scholar

  • Isolation and properties of promitochondria from anaerobic stationary-phase yeast cells. Antonie Van Leeuwenhoek 85: 9-21.Google Scholar

  • Schiefelbein J.W., Masucci J.D. &Wang H. 1997. Building a root: the control of patterning and morphogenesis during root development.Google Scholar

  • Plant Cell 9: 1089-1098.Google Scholar

  • Seguí-Simarro J.M., Coronado M.J. & Staehelin L.A. 2008. The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol. 148: 1380-1393.Web of ScienceGoogle Scholar

  • Seguí-Simarro J.M. & Staehelin L. A. 2009. Mitochondrial reticulation in shoot apical meristem cells of Arabidopsis provides a mechanism for homogenization of mtDNA prior to gamete formation. Plant Signal. Behav. 4: 168-171.Google Scholar

  • Sheahan M.B., McCurdy D.W. & Rose R.J. 2005. Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J. 44: 744-755.Google Scholar

  • Ubeda-Tomas S., Federici F., Casimiro I., Beemster G.T., Bhalerao R., Swarup R., Doerner P., Haseloff J. & Bennett M.J. 2009. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19: 1194-1199.Web of ScienceGoogle Scholar

  • Van Gestel K. & Verbelen J.P. 2002. Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotiana tabacum L.). J. Exp. Bot. 53: 1215-1218.Google Scholar

  • Welchen E., Garcia L., Mansilla N. & Gonzalez D.H. 2014. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front. Plant Sci. 4: 551.Web of ScienceGoogle Scholar

  • Yamamoto H., Morino K., Nishio Y., Ugi S., Yoshizaki T., Kashiwagi A. & Maegawa H. 2012. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am. J. Physiol.Web of ScienceGoogle Scholar

  • Endocrinol. Metab. 303: E1419-E1427.Google Scholar

  • Yoo B.Y. 1970. Ultrastructural changes in cells of pea embryo radicles during germination. J. Cell Biol. 45: 158-171. Google Scholar

About the article

Received: 2015-02-26

Accepted: 2015-08-19

Published Online: 2016-01-08

Published in Print: 2015-08-01

Citation Information: Biologia, Volume 70, Issue 8, Pages 1019–1025, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2015-0130.

Export Citation

© 2016. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in