Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 71, Issue 10


The multipotent action of electromagnetic field

Natalia Cichoń
  • Corresponding author
  • Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alicja K. Olejnik
  • Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elzbieta Miller
  • Department of Physical Medicine, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland
  • Neurorehabilitation Ward, III General Hospital in Lodz, Milionowa 14, 93-113 Lodz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Saluk
  • Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/biolog-2016-0142


The use of electromagnetic field in the treatment of diseases has already been known for centuries. Low hazard, wide applicability, good clinical effect and the relatively low cost enable the electromagnetic field therapy to be widely used. The biological effect of the electromagnetic field is based on inter alia, analgesic, anti-inflammatory, osteogenetic and regenerative actions, which are associated with the changes in cellular signal transmission, action on biological membranes, ion transport processes, protein synthesis, cell proliferation and apoptosis. In addition, the electromagnetic field increases quantity of collagen content elevating its density and a more regular arrangement. Furthermore, it induces the activation of glutathione peroxidase and intensification of the process of erythropoiesis leading to better use of oxygen in the tissues around the wound. The electromagnetic field is used in rehabilitation of patients with diseases of skeletal, nervous and respiratory systems. Moreover, electromagnetic field may be used in the course of most inflammatory diseases and in the case of concomitant pain. The objective of this paper is to present the actual state of knowledge on selected applications of electromagnetic field in the biomedical treatment area.

Keywords: electromagnetic field; analgesia; inflammation; rehabilitation


  • Aaron R.K., Wang S. & Ciombor D.M. 2002. Upregulation of basal TGFβ1 levels EMF coincident with chondrogenesis – implications of skeletal repair and tissue engineering. J. Orthop. Res. 20: 233–240.Google Scholar

  • Bao X., Shi Y., Huo X. & Song T. 2006. Possible involvement of β-endorphin, substance P, and serotonin in rat analgesia induced by extremely low frequency magnetic field. Bioelectromagnetics 27: 467–472.Google Scholar

  • Barker A.T., Dixon R.A., Sharrard W.J. & Sutcliffe M.L. 1984. Pulsed magnetic field therapy for tribial non-union. Interim results of a double-blind trial. Lancet 5: 994–996.Google Scholar

  • Bediz C.S., Baltaci A.K., Mogulkoc R. & Oztekin E. 2006. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J. Exp. Med. 208: 133–140.Google Scholar

  • Bernabo N., Saponaro I., Tettamanti E., Mattioli M. & Barboni B. 2014. Acute exposure to a 2?mT static magnetic field affects ionic homeostasis of in vitro grown porcine granulosa cells. Bioelectromagnetics 35: 231–234.Google Scholar

  • Beuther D.A., Weiss S.T. & Sutherland E.R. 2006. Obesity and asthma. Am. J. Respir. Crit. Care Med. 174: 112–119.Google Scholar

  • Bielecka-Dabrowa A., Gluba-Brzózka A., Michalska-Kasiczak M., Misztal M., Rysz J. & Banach M. 2015. The multi-biomarker approach for heart failure in patients with hypertension. Int. J. Mol. Sci. 16: 10715–107133.Google Scholar

  • Binic I., Ljubenovic M. & Mojsa J. 2013. Skin ageing: natural weapons and strategies. Evid. Based Complement. Alternat. Med. 2013: 827248.Google Scholar

  • Blackman C., Benane S., Kinney L., Joines W.T. & House D.E. 1982. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat. Res. 92: 510–520.Google Scholar

  • Całkosiński I., Borodulin-Nadzieja L., Stańda M., Wasilewska U. & Pietraszkiewicz T. 2003. Influence of therapeutic magnetic stimulation on concentrations of collagen tissue in the course of experimental pleuritis in rats. Medycyna Weterynaryjna 59: 161–164.Google Scholar

  • Ciejka E., Gorąca A., Kowacka B. & Skibska B. 2007. Mechanizmy oddziaływania pola magnetycznego niskiej częstotliwośi na układy biologiczne. [Mechanisms of impact of low magnetic field on biological systems.] Fizjoterapia 15: 22–26.Google Scholar

  • Ciejka E., Skibska B. & Gorąca A. 2010. Wpływ pola magnetycznego niskiej częstotliwośsci na stres oksydacyjny w tkance mięsniowej szczura. [Influence of the low frequency magnetic field on the parameters of oxidative stress in rat’s muscles.] Acta. Bio-Opt. Inform. Med. 3: 224–226.Google Scholar

  • Ciombor D.M., Aaron R.K., Wang S. & Simon B. 2003. Modification of osteoarthritis by pulsed electromagnetic field – a morphological study. Osteoarthritis Cartilage 11: 455–462.Google Scholar

  • Dakowicz A., Kuryliszyn-Moskal A., Kosztyła-Hojna B., Moskal D. & Latosiewicz R. 2011. Comparison of the long-term effectiveness of physiotherapy programs with low-level laser therapy and pulsed magnetic field in patients with carpal tunnel syndrome. Adv. Med. Sci. 56: 270–274.Google Scholar

  • de la Rosa M., Rutz S., Dorninger H. & Scheffold A. 2004. Interleukin-2 is essential for CD4+ CD25+ regulatory T cell function. Eur. J. Immunol. 34: 2480–2488.Google Scholar

  • Eguchi Y., Ogiue-Ikeda M. & Ueno S. 2003. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci. Lett. 351: 130–132.Google Scholar

  • Frahn J., Lantow M., Lupke M., Weiss D.G. & Simkó M. 2006. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J. Cell. Biochem. 1: 168–177.Google Scholar

  • Friedman N.J. & Zeiger R.S. 2005. The role of breast-feeding in the development of allergies and asthma. J. Allergy Clin. Immunol. 115: 1238–1248.Google Scholar

  • Gkogkolou P., Meyer V. & Goerge T. 2015. Chronische venöse Insuffizienz: Aktuelles zur Pathophysiologie, Diagnostik und Therapie. [Chronic venous insufficiency: Update on patho-physiology, diagnosis and treatment.] Hautarzt 66: 375–385.Google Scholar

  • Guerkov H.H., Lohmann C.H., Liu Y., Dean D.D., Simon B.J., Heckman J.D., Schwartz Z. & Boyan B.D. 2001. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin. Orthop. Relat. Res. 384: 265–279.Google Scholar

  • Halle B. 1988. On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bio-electromagnetics 9: 381–385.Google Scholar

  • Jawień A., Grzela T. & Ochwat A. 2003. Prevalence of chronic venous insufficiency in men and women in Poland: multicentre cross-sectional study in 40,095 patients. Phlebology 3: 110–122.Google Scholar

  • Kennedy J.M. & Zochodne D.W. 2005. Impaired peripheral nerve regeneration in diabetes mellitus. J. Peripher. Nerv. Syst. 10: 144–157.Google Scholar

  • Kurzeja E., Synowiec-Wojtarowicz A., Stec M., Glinka M., Gawron S. & Pawłowska-Góral K. 2013. Effect of a static magnetic fields and fluoride ions on the antioxidant defence system of mice fibroblasts. Int. J. Mol. Sci. 14: 15017–15028.Google Scholar

  • Longo F.M., Yang T., Hamilton S., Hyde J.F., Walker J., Jennes L., Stach R. & Sisken B.F. 1999. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J. Neurosci. Res. 55: 230–237.Google Scholar

  • Marcinkowska-Gapinska A. & Nawrocka-Bogusz H. 2013. Analysis of the magnetic field influence on the rheological properties of healthy persons blood. Biomed. Res. Int. 2013: 490410.Google Scholar

  • Mark M.J. 2002. Descending control of pain. Prog. Neurobiol. 66: 355–474.Google Scholar

  • Markov M. 2015. XXIst century magnetotherapy. Electromagn. Biol. Med. 34: 190–196.Google Scholar

  • Minoia P. & Sciorsci R.L. 2001. Metabolic control through L-calcium channel, PKC and opioid receptors modulation by an association of naloxone and calcium salts. Curr. Drug Targets Immune Endocr. Metabol. Disord. 1: 131–137.Google Scholar

  • Murabayashi S. 2013. Application of magnetic field for biological response modification. Biomed. Mater. Eng. 23: 117–128.Google Scholar

  • Nicolaides A.N., Allegra C., Bergan J., Bradbury A., Cairols M., Carpentier P., Comerota A., Delis C., Eklof B., Fassiadis N., Georgiou N., Geroulakos G., Hoffmann U., Jantet G., Jawien A., Kakkos S., Kalodiki E., Labropoulos N., Neglen P., Pappas P., Partsch H., Perrin M., Rabe E., Ramelet A.A., Vayssaira M., Ioannidou E. & Taft A. 2008. Management of chronic venous disorders of the lower limbs: guidelines according to scientific evidence. Int. Angiol. 27: 1–59.Google Scholar

  • Ober C. 2005. Perspectives on the past decade of asthma genetics. J. Clin. Immunol. 116: 274–278.Google Scholar

  • Ongaro A., Varani K., Masieri F.F., Pellati A., Massari L., Cadossi R., Vincenzi F., Borea P.A., Fini M., Caruso A. & De Mattei M. 2012. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2 and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell. Physiol. 227: 2461–2469.Google Scholar

  • Pascarella L. & Shortell C.K. 2015. Medical management of venous ulcers. Semin. Vasc. Surg. 28: 21–28.Google Scholar

  • Prato F.S., Kavaliers M. & Thomas A.W. 2000. Extremely low frequency magnetic fields can either increase or decrease analgeasia in the land snail depending on field and light conditions. Bioelectromagnetics 21: 287–301.Google Scholar

  • Raus B.S., Selakovic V., Radenovic L., Prolic Z. & Janac B. 2014. Extremely low frequency magnetic field (50 Hz, 0.5 mT reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One 9: e88921.Google Scholar

  • Rohde C., Chiang A., Adipoju O., Casper D. & Pilla A.A. 2010. Effects of pulsed electromagnetic fields on interleukin-1 beta and postoperative pain: a double-blind, placebo-controlled, pilot study in breast reduction patients. Plast. Reconstr. Surg. 125: 1620–1629.Google Scholar

  • Sadlonova J., Korpas J., Salat D., Miko L. & Kudlicka J. 2003. The effect of the pulsatile electromagnetic field in children suffering from bronchial asthma. Acta Physiol. Hung. 90: 327–334.Google Scholar

  • Sadlonova J., Korpas J., Vrabec M., Salat D., Buchancova J. & Kudlicka J. 2002. The effect of the pulsatile electromagnetic field in patients suffering from chronic obstructive pulmonary disease and bronchial asthma. Bratisl. Lek. Listy. 103: 260–265.Google Scholar

  • Saliev T., Mustapova Z., Kulsharova G., Bulanin D. & Mikhalovsky S. 2014. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell. Prolif. 47: 485–493.Google Scholar

  • Sieroń A., Cieślar G., Kawczyk-Krupka A., Biniszkiewicz T., Bilska-Urban A. & Adamek M. 2002. Podstawy teoretyczne, pp. 15–36. In: Sieroń A., Cieślar G. & Kawczyk-Krupka A. (eds) Zastosowanie pól magnetycznych w medycynie, 2nd Ed, supplemented and extended. Bielsko-Biala, α-Medica Press.Google Scholar

  • Sieroń A., Franek A., Brzezińska-Wcisło L., Błaszczak E., Taradaj J., Kuśka R., Kamińska-Winciorek G. & Cieślar G. 2005. Próba obiektywizacji oceny skuteczności terapeutycznej magnetostymulacji w leczeniu owrzodzeń żylnych podudzi. [Attempt to objective estimation of therapeutical efficacy of magnetostimulation in the treatment of venous leg ulcers.] Balneologia Polska 1–2: 33–40.Google Scholar

  • Sieroń A. & Glinka M. 2002. Wpływ pól magnetycznych o zakresach terapeutycznych na proces gojenia się skóry i tkanek miękkich. Chirurgia Polska 4: 153–158.Google Scholar

  • Sigurs N., Bjamason R., Sigurgergsson F. & Kjellman B. 2000. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care. Med. 161: 1501–1507.Google Scholar

  • Soda A., Ikehara T., Kinouchi Y. & Yoshizaki K. 2008. Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signalling pathways in osteoblast-like cells. J. Med. Invest. 55: 267–278.Google Scholar

  • Sosnowski P., Mikrut K., Paluszak J., Krauss H., Koźlik J. & Jaroszyk F. 1999. Aktywność enzymów antyoksydacyjnych we krwi szczurów poddanych długotrwałemu działaniu pola magnetycznego. [The antioxidative enzymes activity in blood of rats exposed to long-term magnetic field.] Balneologia Polska 41: 18–24.Google Scholar

  • Stelmach I., Jerzyńska J., Stelmach W., Majak P., Chew G. & Kuna P. 2002. The prevalence of mouse allergen in inner-city homes. Pediatr. Allergy Immunol. 13: 299–302.Google Scholar

  • Thomas A.W., Kavaliers M., Prato F.S. & Ossenkopp K.P. 1997. Antinociceptive effects of pulsed magnetic field in the land snail, Capaea nemoralis. Neurosci. Lett. 222: 107–110.Google Scholar

  • Tkaczuk-Włach J., Sobstyl M. & Jakiel G. 2011. Przewlekła niewydolność żylna u kobiet. [Chronic venous insufficiency in woman.] Przegląd Menopauzalny 4: 343–348.Google Scholar

  • Tokarz-Deptułla B., Miller T. & Deptułla W. 2011. Cytokiny z rodziny interleukiny 1. [The interleukin-1 family of cytokines.] Postępy Mikrobiologii 50: 217–221.Google Scholar

  • Toledo E.J.L., Ramalho T.C. & Magriotis Z.M. 2008. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. J. Mol. Struct. 888: 409–415.Google Scholar

  • Varani K., De Mattei M., Vincenzi F., Gessi S., Merighi S., Pellati A., Ongaro A., Caruso A., Cadossi R. & Borea P.A. 2007. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis Cartilage 16: 292–304.Google Scholar

  • Vianale G., Reale M., Amerio P., Stefanachi M., Di Luzio S. & Muraro R. 2008. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br. J. Dermatol. 158: 1189–1196.Google Scholar

  • Vincenzi F., Targa M., Corciulo C., Gessi S., Merighi S., Setti S., Cadossi R., Goldring M.B., Borea P.A. & Varani K. 2013. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8: e65561.Google Scholar

  • Weintraub M.I. & Cole S.P. 2008. A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome. Pain Med. 9: 493–504.Google Scholar

  • Weintraub M.I., Herrmann D.N., Smith A.G., Backonja M.M. & Cole S.P. 2009. Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch. Phys. Med. Rehabil. 90: 1102–1109.Google Scholar

  • Wilson S.L., Guilbert M., Sulé-Suso J., Torbet J., Jeannesson P., Sockalingum G.D. & Yang Y. 2014. A microscopic and macroscopic study of aging collagen on its molecular structure, mechanical properties, and cellular response. FASEB J. 8: 14–25.Google Scholar

  • Wlaschek M. & Scharffetter-Kochanek K. 2005. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 13: 452– 461.Google Scholar

  • Wróbel M.P., Szymborska-Kajanek A., Wystrychowski G., Biniszkiewicz T., Sieroń-Stołtny K., Sieroń A., Pierzchała K., Grzeszczak W. & Strojek K. 2008. Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab. 34: 349–354.Google Scholar

  • Yeoh-Ellerton S. & Stacey M.C. 2003. Iron and 8-isoprostane levels in acute and chronic wounds. J. Inv. Dermatol. 121: 918–925.Google Scholar

  • Zhao M., Bai H., Wang E., Forrester J.V. & McCaig C.D. 2004. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117: 397–405.Google Scholar

  • Żelaszczyk D., Waszkielewicz A. & Marona H. 2012. Kolagen – struktura oraz zastosowanie w kosmetologii i medycynie estetycznej. [Collagen – structure and application in cosmetology and aesthetic medicine.] Estetologia Medyczna i Kosmetologia 2: 14–20.Google Scholar

About the article

Received: 2016-05-09

Accepted: 2016-10-17

Published Online: 2016-11-23

Published in Print: 2016-10-01

Citation Information: Biologia, Volume 71, Issue 10, Pages 1103–1110, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0142.

Export Citation

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in