Jump to ContentJump to Main Navigation
Show Summary Details

Biologia

12 Issues per year


IMPACT FACTOR 2015: 0.719
5-year IMPACT FACTOR: 0.740

SCImago Journal Rank (SJR) 2015: 0.322
Source Normalized Impact per Paper (SNIP) 2015: 0.510
Impact per Publication (IPP) 2015: 0.786

Online
ISSN
1336-9563
See all formats and pricing
Volume 71, Issue 10 (Oct 2016)

Issues

The multipotent action of electromagnetic field

Natalia Cichoń
  • Corresponding author
  • Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
  • Email:
/ Alicja K. Olejnik
  • Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
/ Elzbieta Miller
  • Department of Physical Medicine, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland
  • Neurorehabilitation Ward, III General Hospital in Lodz, Milionowa 14, 93-113 Lodz, Poland
/ Joanna Saluk
  • Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/biolog-2016-0142

Abstract

The use of electromagnetic field in the treatment of diseases has already been known for centuries. Low hazard, wide applicability, good clinical effect and the relatively low cost enable the electromagnetic field therapy to be widely used. The biological effect of the electromagnetic field is based on inter alia, analgesic, anti-inflammatory, osteogenetic and regenerative actions, which are associated with the changes in cellular signal transmission, action on biological membranes, ion transport processes, protein synthesis, cell proliferation and apoptosis. In addition, the electromagnetic field increases quantity of collagen content elevating its density and a more regular arrangement. Furthermore, it induces the activation of glutathione peroxidase and intensification of the process of erythropoiesis leading to better use of oxygen in the tissues around the wound. The electromagnetic field is used in rehabilitation of patients with diseases of skeletal, nervous and respiratory systems. Moreover, electromagnetic field may be used in the course of most inflammatory diseases and in the case of concomitant pain. The objective of this paper is to present the actual state of knowledge on selected applications of electromagnetic field in the biomedical treatment area.

Keywords: electromagnetic field; analgesia; inflammation; rehabilitation

References

  • Aaron R.K., Wang S. & Ciombor D.M. 2002. Upregulation of basal TGFβ1 levels EMF coincident with chondrogenesis – implications of skeletal repair and tissue engineering. J. Orthop. Res. 20: 233–240.

  • Bao X., Shi Y., Huo X. & Song T. 2006. Possible involvement of β-endorphin, substance P, and serotonin in rat analgesia induced by extremely low frequency magnetic field. Bioelectromagnetics 27: 467–472.

  • Barker A.T., Dixon R.A., Sharrard W.J. & Sutcliffe M.L. 1984. Pulsed magnetic field therapy for tribial non-union. Interim results of a double-blind trial. Lancet 5: 994–996.

  • Bediz C.S., Baltaci A.K., Mogulkoc R. & Oztekin E. 2006. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J. Exp. Med. 208: 133–140.

  • Bernabo N., Saponaro I., Tettamanti E., Mattioli M. & Barboni B. 2014. Acute exposure to a 2?mT static magnetic field affects ionic homeostasis of in vitro grown porcine granulosa cells. Bioelectromagnetics 35: 231–234.

  • Beuther D.A., Weiss S.T. & Sutherland E.R. 2006. Obesity and asthma. Am. J. Respir. Crit. Care Med. 174: 112–119.

  • Bielecka-Dabrowa A., Gluba-Brzózka A., Michalska-Kasiczak M., Misztal M., Rysz J. & Banach M. 2015. The multi-biomarker approach for heart failure in patients with hypertension. Int. J. Mol. Sci. 16: 10715–107133.

  • Binic I., Ljubenovic M. & Mojsa J. 2013. Skin ageing: natural weapons and strategies. Evid. Based Complement. Alternat. Med. 2013: 827248.

  • Blackman C., Benane S., Kinney L., Joines W.T. & House D.E. 1982. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat. Res. 92: 510–520.

  • Całkosiński I., Borodulin-Nadzieja L., Stańda M., Wasilewska U. & Pietraszkiewicz T. 2003. Influence of therapeutic magnetic stimulation on concentrations of collagen tissue in the course of experimental pleuritis in rats. Medycyna Weterynaryjna 59: 161–164.

  • Ciejka E., Gorąca A., Kowacka B. & Skibska B. 2007. Mechanizmy oddziaływania pola magnetycznego niskiej częstotliwośi na układy biologiczne. [Mechanisms of impact of low magnetic field on biological systems.] Fizjoterapia 15: 22–26.

  • Ciejka E., Skibska B. & Gorąca A. 2010. Wpływ pola magnetycznego niskiej częstotliwośsci na stres oksydacyjny w tkance mięsniowej szczura. [Influence of the low frequency magnetic field on the parameters of oxidative stress in rat’s muscles.] Acta. Bio-Opt. Inform. Med. 3: 224–226.

  • Ciombor D.M., Aaron R.K., Wang S. & Simon B. 2003. Modification of osteoarthritis by pulsed electromagnetic field – a morphological study. Osteoarthritis Cartilage 11: 455–462.

  • Dakowicz A., Kuryliszyn-Moskal A., Kosztyła-Hojna B., Moskal D. & Latosiewicz R. 2011. Comparison of the long-term effectiveness of physiotherapy programs with low-level laser therapy and pulsed magnetic field in patients with carpal tunnel syndrome. Adv. Med. Sci. 56: 270–274.

  • de la Rosa M., Rutz S., Dorninger H. & Scheffold A. 2004. Interleukin-2 is essential for CD4+ CD25+ regulatory T cell function. Eur. J. Immunol. 34: 2480–2488.

  • Eguchi Y., Ogiue-Ikeda M. & Ueno S. 2003. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci. Lett. 351: 130–132.

  • Frahn J., Lantow M., Lupke M., Weiss D.G. & Simkó M. 2006. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J. Cell. Biochem. 1: 168–177.

  • Friedman N.J. & Zeiger R.S. 2005. The role of breast-feeding in the development of allergies and asthma. J. Allergy Clin. Immunol. 115: 1238–1248.

  • Gkogkolou P., Meyer V. & Goerge T. 2015. Chronische venöse Insuffizienz: Aktuelles zur Pathophysiologie, Diagnostik und Therapie. [Chronic venous insufficiency: Update on patho-physiology, diagnosis and treatment.] Hautarzt 66: 375–385.

  • Guerkov H.H., Lohmann C.H., Liu Y., Dean D.D., Simon B.J., Heckman J.D., Schwartz Z. & Boyan B.D. 2001. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin. Orthop. Relat. Res. 384: 265–279.

  • Halle B. 1988. On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bio-electromagnetics 9: 381–385.

  • Jawień A., Grzela T. & Ochwat A. 2003. Prevalence of chronic venous insufficiency in men and women in Poland: multicentre cross-sectional study in 40,095 patients. Phlebology 3: 110–122.

  • Kennedy J.M. & Zochodne D.W. 2005. Impaired peripheral nerve regeneration in diabetes mellitus. J. Peripher. Nerv. Syst. 10: 144–157.

  • Kurzeja E., Synowiec-Wojtarowicz A., Stec M., Glinka M., Gawron S. & Pawłowska-Góral K. 2013. Effect of a static magnetic fields and fluoride ions on the antioxidant defence system of mice fibroblasts. Int. J. Mol. Sci. 14: 15017–15028.

  • Longo F.M., Yang T., Hamilton S., Hyde J.F., Walker J., Jennes L., Stach R. & Sisken B.F. 1999. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J. Neurosci. Res. 55: 230–237.

  • Marcinkowska-Gapinska A. & Nawrocka-Bogusz H. 2013. Analysis of the magnetic field influence on the rheological properties of healthy persons blood. Biomed. Res. Int. 2013: 490410.

  • Mark M.J. 2002. Descending control of pain. Prog. Neurobiol. 66: 355–474.

  • Markov M. 2015. XXIst century magnetotherapy. Electromagn. Biol. Med. 34: 190–196.

  • Minoia P. & Sciorsci R.L. 2001. Metabolic control through L-calcium channel, PKC and opioid receptors modulation by an association of naloxone and calcium salts. Curr. Drug Targets Immune Endocr. Metabol. Disord. 1: 131–137.

  • Murabayashi S. 2013. Application of magnetic field for biological response modification. Biomed. Mater. Eng. 23: 117–128.

  • Nicolaides A.N., Allegra C., Bergan J., Bradbury A., Cairols M., Carpentier P., Comerota A., Delis C., Eklof B., Fassiadis N., Georgiou N., Geroulakos G., Hoffmann U., Jantet G., Jawien A., Kakkos S., Kalodiki E., Labropoulos N., Neglen P., Pappas P., Partsch H., Perrin M., Rabe E., Ramelet A.A., Vayssaira M., Ioannidou E. & Taft A. 2008. Management of chronic venous disorders of the lower limbs: guidelines according to scientific evidence. Int. Angiol. 27: 1–59.

  • Ober C. 2005. Perspectives on the past decade of asthma genetics. J. Clin. Immunol. 116: 274–278.

  • Ongaro A., Varani K., Masieri F.F., Pellati A., Massari L., Cadossi R., Vincenzi F., Borea P.A., Fini M., Caruso A. & De Mattei M. 2012. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2 and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell. Physiol. 227: 2461–2469.

  • Pascarella L. & Shortell C.K. 2015. Medical management of venous ulcers. Semin. Vasc. Surg. 28: 21–28.

  • Prato F.S., Kavaliers M. & Thomas A.W. 2000. Extremely low frequency magnetic fields can either increase or decrease analgeasia in the land snail depending on field and light conditions. Bioelectromagnetics 21: 287–301.

  • Raus B.S., Selakovic V., Radenovic L., Prolic Z. & Janac B. 2014. Extremely low frequency magnetic field (50 Hz, 0.5 mT reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One 9: e88921.

  • Rohde C., Chiang A., Adipoju O., Casper D. & Pilla A.A. 2010. Effects of pulsed electromagnetic fields on interleukin-1 beta and postoperative pain: a double-blind, placebo-controlled, pilot study in breast reduction patients. Plast. Reconstr. Surg. 125: 1620–1629.

  • Sadlonova J., Korpas J., Salat D., Miko L. & Kudlicka J. 2003. The effect of the pulsatile electromagnetic field in children suffering from bronchial asthma. Acta Physiol. Hung. 90: 327–334.

  • Sadlonova J., Korpas J., Vrabec M., Salat D., Buchancova J. & Kudlicka J. 2002. The effect of the pulsatile electromagnetic field in patients suffering from chronic obstructive pulmonary disease and bronchial asthma. Bratisl. Lek. Listy. 103: 260–265.

  • Saliev T., Mustapova Z., Kulsharova G., Bulanin D. & Mikhalovsky S. 2014. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell. Prolif. 47: 485–493.

  • Sieroń A., Cieślar G., Kawczyk-Krupka A., Biniszkiewicz T., Bilska-Urban A. & Adamek M. 2002. Podstawy teoretyczne, pp. 15–36. In: Sieroń A., Cieślar G. & Kawczyk-Krupka A. (eds) Zastosowanie pól magnetycznych w medycynie, 2nd Ed, supplemented and extended. Bielsko-Biala, α-Medica Press.

  • Sieroń A., Franek A., Brzezińska-Wcisło L., Błaszczak E., Taradaj J., Kuśka R., Kamińska-Winciorek G. & Cieślar G. 2005. Próba obiektywizacji oceny skuteczności terapeutycznej magnetostymulacji w leczeniu owrzodzeń żylnych podudzi. [Attempt to objective estimation of therapeutical efficacy of magnetostimulation in the treatment of venous leg ulcers.] Balneologia Polska 1–2: 33–40.

  • Sieroń A. & Glinka M. 2002. Wpływ pól magnetycznych o zakresach terapeutycznych na proces gojenia się skóry i tkanek miękkich. Chirurgia Polska 4: 153–158.

  • Sigurs N., Bjamason R., Sigurgergsson F. & Kjellman B. 2000. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care. Med. 161: 1501–1507.

  • Soda A., Ikehara T., Kinouchi Y. & Yoshizaki K. 2008. Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signalling pathways in osteoblast-like cells. J. Med. Invest. 55: 267–278.

  • Sosnowski P., Mikrut K., Paluszak J., Krauss H., Koźlik J. & Jaroszyk F. 1999. Aktywność enzymów antyoksydacyjnych we krwi szczurów poddanych długotrwałemu działaniu pola magnetycznego. [The antioxidative enzymes activity in blood of rats exposed to long-term magnetic field.] Balneologia Polska 41: 18–24.

  • Stelmach I., Jerzyńska J., Stelmach W., Majak P., Chew G. & Kuna P. 2002. The prevalence of mouse allergen in inner-city homes. Pediatr. Allergy Immunol. 13: 299–302.

  • Thomas A.W., Kavaliers M., Prato F.S. & Ossenkopp K.P. 1997. Antinociceptive effects of pulsed magnetic field in the land snail, Capaea nemoralis. Neurosci. Lett. 222: 107–110.

  • Tkaczuk-Włach J., Sobstyl M. & Jakiel G. 2011. Przewlekła niewydolność żylna u kobiet. [Chronic venous insufficiency in woman.] Przegląd Menopauzalny 4: 343–348.

  • Tokarz-Deptułla B., Miller T. & Deptułla W. 2011. Cytokiny z rodziny interleukiny 1. [The interleukin-1 family of cytokines.] Postępy Mikrobiologii 50: 217–221.

  • Toledo E.J.L., Ramalho T.C. & Magriotis Z.M. 2008. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. J. Mol. Struct. 888: 409–415.

  • Varani K., De Mattei M., Vincenzi F., Gessi S., Merighi S., Pellati A., Ongaro A., Caruso A., Cadossi R. & Borea P.A. 2007. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis Cartilage 16: 292–304.

  • Vianale G., Reale M., Amerio P., Stefanachi M., Di Luzio S. & Muraro R. 2008. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br. J. Dermatol. 158: 1189–1196.

  • Vincenzi F., Targa M., Corciulo C., Gessi S., Merighi S., Setti S., Cadossi R., Goldring M.B., Borea P.A. & Varani K. 2013. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8: e65561.

  • Weintraub M.I. & Cole S.P. 2008. A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome. Pain Med. 9: 493–504.

  • Weintraub M.I., Herrmann D.N., Smith A.G., Backonja M.M. & Cole S.P. 2009. Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch. Phys. Med. Rehabil. 90: 1102–1109.

  • Wilson S.L., Guilbert M., Sulé-Suso J., Torbet J., Jeannesson P., Sockalingum G.D. & Yang Y. 2014. A microscopic and macroscopic study of aging collagen on its molecular structure, mechanical properties, and cellular response. FASEB J. 8: 14–25.

  • Wlaschek M. & Scharffetter-Kochanek K. 2005. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 13: 452– 461.

  • Wróbel M.P., Szymborska-Kajanek A., Wystrychowski G., Biniszkiewicz T., Sieroń-Stołtny K., Sieroń A., Pierzchała K., Grzeszczak W. & Strojek K. 2008. Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab. 34: 349–354.

  • Yeoh-Ellerton S. & Stacey M.C. 2003. Iron and 8-isoprostane levels in acute and chronic wounds. J. Inv. Dermatol. 121: 918–925.

  • Zhao M., Bai H., Wang E., Forrester J.V. & McCaig C.D. 2004. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117: 397–405.

  • Żelaszczyk D., Waszkielewicz A. & Marona H. 2012. Kolagen – struktura oraz zastosowanie w kosmetologii i medycynie estetycznej. [Collagen – structure and application in cosmetology and aesthetic medicine.] Estetologia Medyczna i Kosmetologia 2: 14–20.

About the article

Received: 2016-05-09

Accepted: 2016-10-17

Published Online: 2016-11-23

Published in Print: 2016-10-01


Citation Information: Biologia, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0142. Export Citation

Comments (0)

Please log in or register to comment.
Log in