Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 71, Issue 11


Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl(1B) substitution line of wheat variety Chinese Spring (Triticum aestivum)

Xiong Deng / Shun-li Wang
  • Collegeof Life Science, Capital Normal University, Beijing 100048, China
  • Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shou-min Zhen / Wen-ying Zhang
  • Hubei Collaborative Innovation Center for Grain Industry; Yangtze University, Jingzhou 434025, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yue-ming Yan
  • Corresponding author
  • Collegeof Life Science, Capital Normal University, Beijing 100048, China
  • Hubei Collaborative Innovation Center for Grain Industry; Yangtze University, Jingzhou 434025, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-24 | DOI: https://doi.org/10.1515/biolog-2016-0147


Aegilops longissima (2n = 2x = 14, SlSl), has extensive allelic variations of glutenin subunits that are considered as useful gene sources for wheat quality improvement. The Chinese Spring 1Sl(1B) chromosome substitution line CS-1Sl(1B)showed superior dough properties and breadmaking quality due to the introgression of novel glutenin subunits encoded by 1Sl genome. In this study, we identified one novel 1Sl-encoded low molecular weight glutenin B-subunit 1SlLMW-s from CS-1Sl(1B). Its complete encoding sequences were isolated and designated as 1SlLMW-s with 960 bp encoding 318 amino acid residues. Molecular characterization demonstrated that the deduced 1SlLMW-s subunit had a rather large and regular repeated sequence domain, including a high proportion of glutamine residues (about 44%) in the repeats (consensus sequence PPFSQQQQ). A total of 31 SNPs were detected at different positions of encoding sequences. The secondary structure prediction revealed higher β-strand and α-helix content present in 1SlLMW-s. Phylogenetic tree revealed that 1SlLMW-s had close evolutionary relationship with other s-type low molecular weight glutenin subunit (LMW-GSs) genes from different Triticum and Aegilops genomes, which was divergent from LMW-s type gene subfamily at 3.92–5.23 million years ago (MYA). LMW-GSs play a key role in improving breadmaking quality. Abundant expression and specific structural features could contribute to superior gluten quality, including larger and more regular repeated domain, higher proportion of glutamine residues and higher β-strand and α-helix content. This could facilitate the formation of stronger dough structure and superior breadmaking quality. Our work demonstrated that Sl genome had potential glutenin gene resources, and particularly 1SlLMW-s gene could be useful for wheat quality improvement

This article offers supplementary material which is provided at the end of the article.

Keywords: CS-1Sl(1B); LMW-GSs; gluten quality; molecular clone; phylogenetics

Electronic supplementary material. The online version of this article (DOI: 10.1515/biolog-2016-0147) contains supplementary material, which is available to authorized users.


  • Allaby R.G., Banerjee M. & Brown T.A. 1999. Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat. Genome 42: 296–307.Google Scholar

  • An X.L., Zhang Q., Yan Y.M., Li Q.Y., Zhang Y.Z., Wang A.L., Pei Y.H., Tian J.Z., Wang H., Hsam S.L.K. & Zeller F.J. 2006. Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor. Appl. Genet. 113: 383–395.Google Scholar

  • Butow B.J., Ma W., Gale K.R., Cornish G.B., Rampling L., Larroque O., Morell M.K. & Békés F. 2003. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theor. Appl. Genet. 107: 1524–1532.Google Scholar

  • Cornish G.B., Bekes F., Allen H.M. & Martin D.J. 2001. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust. J. Agric. Res. 52: 1339–1348.Google Scholar

  • Cassidy B.G., Dvorak J. & Anderson O.D. 1998. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor. Appl. Genet. 96: 743–750.Google Scholar

  • Chen F.G., Luo Z., Zhang Z.G., Xia G.M. & Min H.X. 2007. Variation and potential value in wheat breeding of low-molecular-weight glutenin subunit genes cloned by genomic and RT-PCR in a derivative of somatic introgression between common wheat and Agropyron elongatum. Mol. Breed. 20: 141–152.Google Scholar

  • Cao H., Yan X., Chen G.X., Zhou J.W., Li X.H., Ma W.J. & Yan Y.M. 2015. Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat( Triticum aestivum L.) and Aegilops crassa. J. Proteomics 112: 95–112.Google Scholar

  • D’Ovidio R. & Masci S. 2004. The low-molecular-weight glutenin subunits of wheat gluten. J. Cereal. Sci. 39: 321–339.Google Scholar

  • Gaut B.S., Morton B.R., McCaig B.C. & Clegg M.T. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA 93: 10274–10279.Google Scholar

  • Gao L.Y., Wang A.L., Li X.H., Dong K., Wang K., Appels R., Ma W.J. & Yan Y.M. 2009. Wheat quality related differential expressions of albumins and globulins revealed by twodimensional difference gel electrophoresis (2-D DIGE). J. Proteomics 73: 279–296.Google Scholar

  • Gupta R.B., Bakes F. & Wrigley C.W. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats: correlation studies. Cereal Chem. 68: 328–333.Google Scholar

  • Gupta R.B., Masci S., Lafiandra D., Bariana H.S. & MacRitchie F. 1996. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J. Exp. Bot. 47: 1377–1385.Google Scholar

  • Harberd N.P., Bartels D. & Thompson R.D. 1985. Analysis of the gliadin multigene loci in bread wheat using nullisomictetrasomic lines. Mol. Gene. Genet. 198: 234–242.Google Scholar

  • Jiang C.X., Pei Y.H., Zhang Y.Z., Li X.H., Yao D.N., Yan Y.M., Ma W.J., Hsam S.L.K. & Zeller F.J. 2008. Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas 145: 92–98.Google Scholar

  • Jin H., Zhang Y., Li G.Y., Mu P.Y., Fan Z., Xia X.C. & He Z.H. 2013. Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. J. Cereal. Sci. 57: 146–152.Google Scholar

  • Jiang Q.T., Ma J., Wei Y.M., Liu Y.X., Lan X.J., Dai S.F., Lu Z.X., Zhao S., Zhao Q.Z. & Zheng Y.L. 2012. Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding. BMC. Plant. Biol. 12: 73.Google Scholar

  • Kasarda D.D., Tao H.P., Evans P.K., Adalsteins A.E. & Yuen S.W. 1988. Sequencing of protein from a single spot of a 2-D gel pattern: N-terminal sequence of a major wheat LMW-glutenin subunit. J. Exp. Bot. 39: 899–906.Google Scholar

  • Kihara H. 1954. Considerations on the evolution and distribution of Aegilops species based on the analyzer-method. Cytologia 19: 336–357.Google Scholar

  • Lee Y.K., Bekes F., Gupta R., Appels R. & Morell M.K. 1999. The low-molecular-weight glutenin subunit proteins of primitive wheats. II. The genes from A-genome species. Theor. Appl. Genet. 98: 119–125.Google Scholar

  • Lew E.J.L., Kuzmicky D.D. & Kasarda D.D. 1992. Characterization of low-molecular-weight glutenin subunits by reversed-phase high performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal. Chem. 69: 508–515.Google Scholar

  • Li J., Han C.X., Zhen S.M., Li X.H. & Yan Y.M. 2014. Characterization of HMW glutenin subunit B×7OE and its distribution in common wheat and related species. Plant. Genetic. Res. C 12: 191–198.Google Scholar

  • Li J., Wang S.L., Yu Z.T., Li X.H., Guo G.F., Feng S., Ma W.J. & Yan Y.M. 2012. Optimization and development of capillary electrophoresis for separating and identifying wheat low molecular weight glutenin subunits. J. Cereal. Sci. 55: 254–256.Google Scholar

  • Li X.H., Wang A.L., Xiao Y.H., Yan Y.M., He Z.H., Appels R., Ma W.J., Hsam S.L.K. & Zeller F.J. 2008a. Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides). Euphytica 159: 181–190.Google Scholar

  • Li X.H., Wang K., Wang S.L., Gao L.Y., Xie X.X., Hsam S.L.K., Zeller F. J. & Yan Y.M. 2010. Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species. Theor. Appl. Genet. 121: 845–856.Google Scholar

  • Li X.H., Ma W.J., Gao L.Y., Zhang Y.Z., Wang A.L., Ji K.M., Wang K., Appels R. & Yan Y.M. 2008b. A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: Evolution at the Glu-3 Loci. Genetics 180: 93–101.Google Scholar

  • Liu W., Zhang Y.Z., Gao X., Wang K., Wang S.L., Zhang Y., He Z.H., Ma W.J. & Yan Y.M. 2012. Comparative proteome analysis of glutenin synthesis and accumulation in developing grains between superior and poor quality bread wheat cultivars. J. Sci. Food. Agric. 92: 106–115.Google Scholar

  • Luo Z., Chen F.G., Feng D.S. & Xia G.M. 2005. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. Theor. Appl. Genet. 111: 272–280.Google Scholar

  • Lv D.W., Subburaj S., Cao M., Yan X., Li X.H., Appels R., Sun D.F., Ma W.J. & Yan Y.M. 2013. Proteome and phosphoproteome reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol. Cell. Proteomics 13: 632–652.Google Scholar

  • McDonald M., Elliot L. & Sweeney P. 1994. DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Sci. Tech. 22: 171–176.Google Scholar

  • Masci S., D’Ovidio R., Lafiandra D. & Kasarda D.D. 1998. Characterization of a Low-Molecular-Weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol. 118: 1147–1158.Google Scholar

  • Masci S., D’Ovidio R., Lafiandra D. & Kasarda D.D. 2000. A 1B-coded low-molecular-weight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars. Theor. Appl. Genet. 100: 396–400.Google Scholar

  • Majoul T., Bancel E., Tribod E., Hamida J.B. & Branlard G. 2004. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction. Proteomics 4: 505–513.Google Scholar

  • Maruyama-Funatsuki W., Takata K., Nishio Z., Tabiki T., Yahata E., Kato A., Saito K., Funatsuki H., Saruyama H. & Yamauchi H. 2004. Identification of low-molecular weight glutenin subunits of wheat associated with breadmaking quality. Plant Breed. 123: 355–360.Google Scholar

  • Paux E., Sourdille P., Salse J., Saintenac C., Choulet F., Leroy P., Korol A., Michalak M., Kianian S., Spielmeyer W., Lagudah E., Somers D., Kilian A., Alaux M., Vautrin S., Bergčs H., Eversole K., Appels R., Safar J., Simkova H., Dolezel J., Bernard M. & Feuillet C. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104.Google Scholar

  • Payne P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread making quality. Annu. Rev. Plant Phys. 38: 141–153.Google Scholar

  • Pei Y.H., Wang A.L., An X.L., Li X.H., Zhang Y.Z., Huang X.Q. & Yan Y.M. 2007. Characterization and comparative analysis of three low molecular weight glutenin C-subunit genes isolated from Aegilops tauschii. Can. J. Plant. Sci. 87: 273–280.Google Scholar

  • Pitts E.G., Rafalski J.A. & Hedgcoth C. 1988. Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucl. Acids. Res. 16: 11376.Google Scholar

  • Shewry P.R. & Halford N.G. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53: 947–958.Google Scholar

  • Shewry P.R., Miflin B.J., Lew E.J.L. & Kasarda D.D. 1983. The preparation and characterization of an aggregated gliadin fraction from wheat. J. Exp. Bot. 148: 1403–1410.Google Scholar

  • Tatham A.S., Miflin B.J. & Shewry P.R. 1985. The beta-turn conformation in wheat gluten proteins: Relationship to gluten elasticity. Cereal Chem. 62: 405–442.Google Scholar

  • Tao H.P. & Kasarda D.D. 1989. Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. J. Exp. Bot. 40: 1015–1020.Google Scholar

  • Tabiki T., Ikeguchi S. & Ikeda T.M. 2006. Effect of high-molecular-weight and low-molecular-weight glutenin subunit alleles on common wheat flour quality. Breed. Sci. 56: 131–136.Google Scholar

  • Wan Y., Liu K., Wang D. & Shewry P.R. 2000. High-molecular-weight glutenin subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat. Theor. Appl. Genet. 101: 879–884.Google Scholar

  • Wang K., An X.L., Pan L.P., Dong K., Gao L.Y., Wang S.L., Xie Z.Z., Zhang Z., Appels R., Ma W.J. & Yan Y.M. 2012. Molecular characterization of HMW-GS 1Dx3t and 1Dx4t genesfrom Aegilops tauschii and their potential value for wheat quality improvement. Hereditas 149: 41–49.Google Scholar

  • Wang K., Gao L.Y., Wang S.L., Zhang Y.Z., Li X.H., Zhang M.Y., Xie Z.Z., Yan Y.M., Belgard M. & Ma W.J. 2011. Phylogenetic relationship of a new class of LMW-GS genes in the M genome of Aegilops comosa. Theor. Appl. Genet. 122: 1411–1425.Google Scholar

  • Wang S.L., Yu Z.T., Cao M., Shen X.X., Li N., Li X.H., Ma W.J., Weißgerber H., Zeller F., Hsam S. & Yan Y.M. 2013. Molecular mechanisms of HMW glutenin subunits from 1Sl genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS One 8: e58947-e58947.Google Scholar

  • Yan Y.M., Hsam S.L.K., Yu J.Z., Jiang Y. & Zeller F.J. 2003a. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130: 377–385.Google Scholar

  • Yan Y.M., Yu J., Jiang Y., Hu Y., Cai M., Hsam S.L.K. & Zeller F.J. 2003b. Capillary electrophoresis separation of high molecular weight glutenin subunits in bread wheat (Triticum aestivum L.) and related species with phosphate-based buffers. Electrophoresis 24: 1429–1436.Google Scholar

  • Yen Y. & Kimber G. 1990. Genomic relationships of Triticum searsii to other S-genome diploid Triticum species. Genome 33: 369–373.Google Scholar

  • Zhang X.F., Jin H., Zhang Y., Liu D.C., Li G.Y., Xian X.C., He Z.H. & Zhang A.M. 2012. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biol. 12: 1–16.Google Scholar

  • Zhang Y.Z., Li X.H., Wang A.L., An X.L., Zhang Q., Pei Y.H., Gao L.Y., Appels R., Ma W.J. & Yan Y.M. 2008. Novel x-type HMW glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 178: 23–33.Google Scholar

  • Zhen S.M., Han C.X., Ma C.Y., Gu A.Q., Zhang M., Shen X.X., Li X.H. & Yan Y.M. 2014. Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality. BMC Plant Biol.14: 1–17.Google Scholar

About the article

#Contributed equally to this work

Received: 2016-03-24

Accepted: 2016-09-28

Published Online: 2016-12-24

Published in Print: 2016-11-01

Citation Information: Biologia, Volume 71, Issue 11, Pages 1212–1222, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0147.

Export Citation

© 2016 Institute of Botany, Slovak Academy of Sciences.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kunyang Wang, Zhishan Lin, Long Wang, Ke Wang, Qinghua Shi, Lipu Du, and Xingguo Ye
Theoretical and Applied Genetics, 2017

Comments (0)

Please log in or register to comment.
Log in