Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 71, Issue 12

Issues

Recovery capacity of the edible halophyte Crithmum maritimum from temporary salinity in relation to nutrient accumulation and nitrogen metabolism

Rihab Ben Fattoum
  • Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, El Manar I, 1060, Tunis, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chokri Zaghdoud
  • Corresponding author
  • Laboratoire Aridoculture et Cultures Oasiennes, Institut des Régions Arides, Route de Djerba Km 22.5, Médenine 4119, Tunisia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdallah Attia
  • Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, El Manar I, 1060, Tunis, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahlem Ben Khedher
  • Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, El Manar I, 1060, Tunis, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Houda Gouia
  • Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, El Manar I, 1060, Tunis, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chiraz Chaffei Haouari
  • Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, El Manar I, 1060, Tunis, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-11 | DOI: https://doi.org/10.1515/biolog-2016-0158

Abstract

Here, the reversibility effects of salinity on Crithmum maritimum L. (Apiaceae), a perennial local oilseed halophyte that was recently suggested as a cash crop for biosaline agriculture, were checked by monitoring a number of parameters in pre-stressed plants and then, replaced in normal conditions. Plants previously grown for 15 days on basic medium were treated for one month by increasing NaCl concentrations (0, 100, 200 and 300 mM), or for three weeks by 300 mM NaCl and then put back again for a week on basic culture medium without salinity (R). Results revealed that C. maritimum was able to tolerate 100 mM NaCl concentration in the culture medium following an efficient N assimilation in roots and osmotic adjustment in leaves and roots. However, from 200 mM NaCl treatment, a significant and progressive reduction in plant growth was observed, mainly due to salt ions-induced limitations of mineral nutrient acquisition and N-assimilating enzymes (NR and GS) in both organs rather than osmotic effects. Interestingly, a one week of 300 mM NaCl elimination allowed C. maritimum plants to achieve their normal growth status through a partial dilution of Na+ and Cl effects on nutrients, osmotically compatible solutes, and activities of N-assimilating enzymes to levels similar to that obtained under 100 mM NaCl. Taken together, it was concluded that a temporary exposition of C. maritimum to salt stress is not necessary followed by significant depreciation in product yield and quality, which highlighted the reversibility effects of salinity on this plant species.

Key words: Crithmum maritimum; N metabolism; nutrients; proline; NaCl; soluble sugars

References

  • Ameziane R.K., Bernhard R.B. & Lightfoot D. 2000. Expression of the bacterial gdhA gene encoding NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 221: 47–57.Google Scholar

  • Ashraf M. & Bashir A. 2003. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 198: 486–498.Google Scholar

  • Barker A.V. & Ready K.M. 1989. Growth and composition of tomato as affected by source of N and biocides. J. Plant Nutr. 12: 95–109.Google Scholar

  • Bates L.S., Waldren R.P. & Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207.Google Scholar

  • Ben Amor N., Ben Hamed K., Debez A., Grignon C. & Abdelly C. 2005. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 168: 889–899.Google Scholar

  • Ben Amor N., Ben Hamed K., Ranieri A. & Abdelly C. 2006. Kinetics of the antioxidant response to salinity in Crithmum maritimum, pp. 81–86. In: Özturk M., Waisel Y., Khan M.A. & Görk G. (eds), Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag, Switzerland.Google Scholar

  • Ben Hamed K., Castagna A., Salem E., Ranieri A. & Abdelly C. 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul.53:185–194.Google Scholar

  • Ben Hamed K., Debez A., Chibani F. & Abdelly C. 2004. Salt response of Crithmum maritimum, an oleaginous halophyte. Trop. Ecol.45:151–159.Google Scholar

  • Bernard S.M. & Habash D.Z. 2009. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol. 182: 608–620.Google Scholar

  • Campbell W.H. 1999. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol.50: 277–303.Google Scholar

  • Carvajal M., Martínez V. & Alcaraz F.C. 1999. Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol. Plant. 105: 95–101.Google Scholar

  • Chandra A.S., Kumar S.S. & Nibedita S. 2001. NaCl-stress induced alteration in glutamine synthetase activity in excised senescing leaves of a salt-sensitive and salt-tolerant rice cultivar in light and darkness. Plant Growth Regul. 34: 287–292.Google Scholar

  • Debouba M., Gouia H., Suzuki A. & Ghorbel M.H. 2006. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. J. Plant Physiol. 163: 1247–1258.Google Scholar

  • Debouba M., Maaroufi-Dghimi H., Suzuki A., Ghorbel M.H. & Gouia H. 2007. Changes in growth and activity of enzymes involved in nitrate redaction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann. Bot. 99: 1143–1151.Google Scholar

  • Debouba M., Maaroufi-Dghimi H., Ghorbel M.H., Gouia H. & Suzuki A. 2012. Expression pattern of genes encoding nitrate and ammonium assimilating enzymes in Arabidopsis thaliana exposed to short term NaCl stress. J. Plant Physiol. 170: 155–160.Google Scholar

  • Dubey R.S. & Singh A.K. 1999. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol. Plant. 42: 233–239.Google Scholar

  • Flores P., Botella M.A., Cerdá A. & Martínez V. 2004. Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can. J. Bot. 82: 207–13.Google Scholar

  • Flowers T.J. & Colmer T.D. 2008. Salinity tolerance in halophytes. New Phytol. 179: 945–963.Google Scholar

  • Flowers T.J., Galal H.K. & Bromham L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct. Plant Biol.37: 604–612.Google Scholar

  • Forde B.G. & Lea P.J. 2007. Glutamate in plants: Metabolism, regulation and signalling. J. Exp. Bot. 58: 2339–2358.Google Scholar

  • Gouia H., Ghorbel M.H. & Touraine B. 1994. Effects of NaCl on flows of N and mineral ions and NO3 reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. J. Plant Physiol. 105: 1409–1418.Google Scholar

  • Grattan S.R. & Grieve C.M. 1999. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78:127–157.Google Scholar

  • Greenway H. & Munns R.1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol.31:149–190.Google Scholar

  • Hamrouni L., Hanana M., Abdelly C. & Ghorbel A. 2011. Exclusion du chlorure et inclusion du sodium: deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera subsp. Sylvestris (var. ‘Séjnène’). Biotechnol. Agron. Soc. Environ.15: 387–400.Google Scholar

  • Hare P. & Cress W.1997. Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul.21:79–102.Google Scholar

  • Hewitt E.J. 1966. Sand and water culture methods used in the study of plant nutrition. Tech. Commun. Commonwealth Bur. Hortic. 22: 431–446.Google Scholar

  • Hu Y.C. & Schmidhalter U. 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 168: 541–549.Google Scholar

  • Ireland R.J. & Lea P.J. 1999. The enzymes of glutamine, glutamate, asparagines and aspartate metabolism, pp. 49–109. In: Singh B.K. (ed.), Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York.Google Scholar

  • James R.A., Blake C., Byrt C.S. & Munns R. 2011. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J. Exp. Bot. 62: 2939–2947.Google Scholar

  • Khadri M., Lina P., Soussi M., Lluch C. & Ocańa A. 2001.Ammonium assimilation and ureide metabolism in common bean (Phaseolus vulgaris) nodules under salt stress. Agronomie 21: 635–643.Google Scholar

  • Khan M.A., Ungar I.A. & Showalter A.M. 2000. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J. Arid Environ. 45: 73–84.Google Scholar

  • Koyro H.W., Ajmal Khan M. & Lieth H. 2011. Halophytic crops: a source for the future to reduce the water crisis? Emir. J. Food Agric. 23: 1–6.Google Scholar

  • Lacerda C.F.D., Cambraia J., Cano M.A.O. & Ruiz H.A. 2001. Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Braz. J. Plant Physiol. 13: 270–284.Google Scholar

  • Lea P.J. & Miflin B.J. 2003. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol. Biochem. 41: 555–564.Google Scholar

  • Loyala-Vergas V.M. & De Jimenez E.S. 1984. Differential role of glutamate dehydrogenase in nitrogen metabolism of maize tissues. Plant Physiol. 76: 536–540.Google Scholar

  • Magalhaes J.R. & Huber D.M. 1991. Response of ammonium assimilation enzymes to nitrogen from treatments in different plant species. J. Plant Nutr.14:175–185.Google Scholar

  • Megdichi W., Ben Amor N., Debez A., Hessini K., Ksouri R., Zuily-Fodil Y. & Abdelly C. 2007. Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol. Plant. 29: 375–384.Google Scholar

  • Miranda K.M., Espey M.G. & Wink D.A. 2001.A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62–71.Google Scholar

  • Molinari H.B.C., Marur C.J., Daros E., de Campos M.K.F., de Carvalho J., Bespalhok J.C., Pereira L.F.P. & Vieira L.G.E. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol. Plant.130: 218–229.Google Scholar

  • Orcutt D.M. & Nilsen E.T. 2000. Physiology of plants under stress: soil and biotic factors. John Wiley & Sons, New York.Google Scholar

  • Rozema J. & Flowers T.J. 2008. Crops for a salinized world. Science 322: 1478–1480.Google Scholar

  • Ruberto G., Baratta M.T., Deans S.G. & Dorman H.J.D. 2000. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essentials oils. Planta Med. 66: 687–693.Google Scholar

  • Sagi M., Savidov N.A., L’vov N.P. & Lips S.H. 1997. Nitrate reductase and molybdenum cofactor in annual ryegrass as affected by salinity and nitrogen source. Physiol. Plant. 99: 546–553.Google Scholar

  • Skopelitis D.S., Paranychianakis N.V., Paschalidis K.A., Pliakonis E.D., Delis I.D., Yakoumakis D.I., Kouvarakis A., Papadakis A.K., Stephanou E.G. & Roubelakis-Angelakis K.A. 2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18: 2767–2781.Google Scholar

  • Szabolcs I. 1994. Soils and salinization, pp. 3–11. In: Pessarakli M. (ed), Handbook of Plantand Crop Stress. Marcel Dekker Inc., New York, USA.Google Scholar

  • Tanji K.K. 2002. Salinity in the soil environment, pp. 21–51. In: Läuchli A. & Lüttge U. (eds), Salinity: Environment-plants-molecules. Kluwer Academic Publishers, Dor-drecht, The Netherlands.Google Scholar

  • Ventura Y., Myrzabayeva M., Alikulov Z., Omarov R., Khozin-Goldberg I. & Sagi M. 2014. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte. AOB Plants 6: 53.Google Scholar

  • Ventura Y., Wuddineh W.A., Myrzabayeva M., Alikulov Z., Khozin-Goldberg I., Shpigel M., Samocha T.M. & Sagi M. 2011. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 128: 189–196.Google Scholar

  • Weatherburn M.W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971–974.Google Scholar

  • Yemm E.W. & Willis A.J. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–514.Google Scholar

  • Yeo A.R. 1998. Molecular biology of salt tolerance in the context of whole plant physiology. J. Exp. Bot. 49: 915–929.Google Scholar

  • Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71.Google Scholar

About the article

Received: 2016-07-13

Accepted: 2016-09-08

Published Online: 2017-01-11

Published in Print: 2016-12-01


Citation Information: Biologia, Volume 71, Issue 12, Pages 1345–1352, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0158.

Export Citation

© 2016 Institute of Botany, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nikolaos Vlahos, Efi Levizou, Paraskevi Stathopoulou, Panagiotis Berillis, Efthimia Antonopoulou, Vlasoula Bekiari, Nikos Krigas, Konstantinos Kormas, and Eleni Mente
Sustainability, 2019, Volume 11, Number 18, Page 4820

Comments (0)

Please log in or register to comment.
Log in