Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 71, Issue 12


Analysis of δ13C and δ15N isotopic signatures to shed light on the hydrological cycle’s influence on the trophic behavior of fish in a Mediterranean reservoir

Amedeo Fadda
  • Department of Sciences for Nature and Environmental Resources (DipNET) of the University of Sassari 4, Sassari, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesco Palmas / Federica Camin / Luca Ziller / Bachisio Mario Padedda
  • Department of Sciences for Nature and Environmental Resources (DipNET) of the University of Sassari 4, Sassari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonella Luglié
  • Department of Sciences for Nature and Environmental Resources (DipNET) of the University of Sassari 4, Sassari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Manca / Andrea Sabatini
Published Online: 2017-01-11 | DOI: https://doi.org/10.1515/biolog-2016-0160


Stable isotope analysis (SIA) of carbon and nitrogen sheds light on the origin of the food resources exploited by the fish and provides basic information on the trophic relationships among taxa. In this study, SIA of C and N was used to investigate the trophic behavior of fish species in a small Mediterranean reservoir, Lake Sos Canales (SC) in Sardinia, Italy, during an annual hydrological cycle. Fish were caught approximately every two months, and baseline isotopic C and N levels in the pelagic and littoral area were analyzed to establish the origin of fish food sources, considering suspended particulate matter, planktonic crustaceans and littoral macroinvertebrates. To assess the relative contribution of the two different sources using SIA, a Dynamic Baseline Mixing Model (DBMM) was applied and the results were compared with the fish gut contents. Our aim was to chart the seasonal trophic behavior of the fish species inhabiting an anthropogenic aquatic environment under considerable stress due to water level fluctuations. Isotopic results showed a seasonal trend with 13C levels depleted more in autumn-winter and less in spring-summer, while an inverse trend was recorded for 15N, both in the isotopic baseline values and in the fish. Isotopic results and gut content analysis highlighted a year-round strict dependence on littoral food sources only for the brown trout, whereas the mosquitofish changed their trophic behavior seasonally, shifting from littoral (high water level period) to pelagic (low water level period) food sources, mirroring the hydrological conditions of Lake SC.

Key words: stable isotope analysis; trophic web; mosquitofish; brown trout; reservoir


  • Agostinho A.A., Pelicice F.M. & Gomes L.C. 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz. J. Biolog. 68 (4 Suppl.): 1119–1132. PMID:19197482Google Scholar

  • Baxter C.V., Faush K.D., Murakami M. & Chapman P.L. 2004. Fish invasion restructures stream and forest by interrupting reciprocal prey subsidies. Ecology 85 (10): 2656–2663. CrossrefGoogle Scholar

  • Bond N.R., Lake P.S. & Arthington H. 2008. The impacts of frought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600 (1): 3–6.CrossrefGoogle Scholar

  • Borroni I., Trasforini S., Bardazzi M. & Gentili G. 2003. Caratterizzazione fenotipica e genetica della popolazione di trota de Rio Baracca (Bacino dell’Orba), pp. 396–436. http://cartogis.provincia.genova.it/itt/cartaittica/PROGE_CartaIttica_1999_2003_Studi_RioBaracca.pdf (accessed 15.06. 2016)

  • Cabral J.A. & Marques J.C. 1999. Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields the lower Mondego River Valley western Portugal. Acta Oecol. 20 (6): 607–620. CrossrefGoogle Scholar

  • Camin F., Perini M., Colombari G., Bontempo L. & Versini G. 2008. Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope rations of milk. Rapid Commun. Mass Spectrom. 22 (11): 1690–1696. CrossrefGoogle Scholar

  • Camin F., Wietzerbin K., Blanch Cortes A. Haberhauer G., Less M. & Versini G.J. 2004. Application of multi element stable isotope ratio analysis to the characterization of French, Italian, and Spanish cheeses. J. Agric. Food Chem. 52 (21): 6592–6606. CrossrefGoogle Scholar

  • Cucherousset J., Bouletreau S., Martino A., Roussel J.M. & Santoul F. 2012. Using stable isotope analysis to determine the ecological effects on non-native fishes. Fish. Manage. Ecol.19 (2): 111–119. CrossrefGoogle Scholar

  • Cucherousset J. & Olden J.D. 2011. The ecological impacts of non native freshwater fishes. Fisheries 36 (5): 215–230. CrossrefGoogle Scholar

  • De Niro M.J. & Epstein S.1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta. 42 (5): 495–506. CrossrefGoogle Scholar

  • Fadda A., Marková S., Kotlík P., Luglié A., Padedda B. & Manca M. 2011. First record of planktonic crustaceans in Sardinian reservoirs. Biologia 66 (5): 856–865. CrossrefGoogle Scholar

  • Fadda A., Rawcliffe R., Padedda B. M., Luglie A., Sechi N., Camin F., Ziller L. & Manca M. 2014. Spatiotemporal dynamics of C and N isotopic signature of zooplankton: a seasonal study on a man-made lake in the Mediterranean region. Ann. Limnol.–Int. J. Limnol.50 (4): 279–287. CrossrefGoogle Scholar

  • Fry B. 2006. Stable Isotope Ecology. Springer, New York, USA, 308 pp. . ISBN: 978-0-387-305134CrossrefGoogle Scholar

  • Gozlan R.E. 2008. Introduction of non-native freshwaterfish: is it all bad? Fish Fish. 9:106–115. CrossrefGoogle Scholar

  • Grey J. 2000. Trophic fractionation and the effects of diet switch on the carbon stable isotopic “signatures” of pelagic consumers. Verh. Internat. Verein. Limnol.27: 3187–3191.Google Scholar

  • Gu B., Schell D.M. & Alexander V.1994. Stable carbon and nitrogen isotope analysis of plankton food web in subartic lake. Can. J. Fish. Aquat. Sci. 51 (6): 1338–1344. .CrossrefGoogle Scholar

  • Hari R.E., Livingstone D.M., Siber R., Burkhardt-Holm R. & Guettinger H. 2006. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob. Change Biol. 12 (1): 10–26. CrossrefGoogle Scholar

  • Hesslein R.H., Capel M.J., Fox D.E. & Hallard K.A. 1991. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River basin, Canada. Can. J. Fish. Aquat. Sci. 48 (11): 2258–2265. CrossrefGoogle Scholar

  • Hesslein R.H., Hallard K.A. & Ramlal P.1993. Replacement of sulfur, carbon and nitrogen in tissue of growing broad white-fish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C and δ15N. Can. J. Fish. Aquat. Sci. 50 (10): 2071–2076. CrossrefGoogle Scholar

  • Leira M. & Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613 (1): 171–184. CrossrefGoogle Scholar

  • Lookwood J.L., Hoopes M.F. & Marchetti M.P. 2007. Invasion Ecology. Blackwell Publishing, Oxford, 312 pp. ISBN: 9781444333657Google Scholar

  • Massidda P.1995. Salmo (trutta) macrostigma in Sardegna. Biolog. Ambient. 5: 40–43.Google Scholar

  • Mehrdad Y., Mehdi R. & Mahsa A. 2011.A radiographical study on skeletal deformities in cultured rainbow trout (Oncorhynchus mykiss) in Iran. Glob. Vet. 7 (6): 601–604.Google Scholar

  • Naselli-Flores L. 2003. Man-made lakes in Mediterranean semiarid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506 (1-3): 13–21. CrossrefGoogle Scholar

  • Orrú F., Deiana A.M. & Cau A. 2010. Introduction and distribution of alien freshwater fishes on the island of Sardinia (Italy): assessment on the basis of existing data sources. J. Appl. Ichthyol.26 (2): 46–52. CrossrefGoogle Scholar

  • Perga M.E. & Gerdeaux D. 2006. Seasonal variability in the δ13C and δ15N values of the zooplankton taxa in two alpine lakes. Acta Oecol. 30 (1): 69–77. CrossrefGoogle Scholar

  • Petrusek A., Hobaek A., Nilssen J.P., Skage M., Černý M., Brede N. & Schwenk K. 2008. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool. Scripta 37 (5): 507–519. CrossrefGoogle Scholar

  • Phillips D.L. & Eldrige P.M. 2006. Estimating the timing of diet shifts using stable isotopes. Oecologia 147 (2): 195–203. CrossrefGoogle Scholar

  • Philips D.L & Gregg J.W. 2001. Uncertainty in source portioning using stable isotopes. Oecologia 127 (2): 171–179. CrossrefGoogle Scholar

  • Phillips D.L. & Koch P.L. 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130 (1): 114–125. CrossrefGoogle Scholar

  • Pyke G.H. 2008. Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annu. Rev. Ecol. Evol. Syst. 39:171–191. CrossrefGoogle Scholar

  • Sabatini A., Cannas R., Follesa M.C., Palmas F., Manunza A., Matta G., Pendugiu A.A., Serra P. & Cau A. 2011. Genetic characterization and artificial re production attempt of endemic Sardinia trout Salmo trutta L.,1758 (Osteichthyes, Salmonidae): Experience in captivity. Ital. J. Zool. 78 (1): 20–26. CrossrefGoogle Scholar

  • Thielsch A., Brede N., Petrusek A., De Meester L.U.C. & Schwenk K. 2009. Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia. Mol. Ecol.18 (8): 1616–1628. CrossrefGoogle Scholar

  • Tundisi G. & Matzumura-Tundisi J. 2003. Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. Hydrobiologia 500 (1-3): 231–242. CrossrefGoogle Scholar

  • Vander Zanden M.J. & Rasmussen J.B. 1999. Primary consumer 13C and 15N and the trophic position of aquatic consumers. Ecology 80 (4): 1395–1404. CrossrefGoogle Scholar

  • Visconti A. & Manca M. 2011. Seasonal changes in the δ13C and δ15N signatures of the Lago Maggiore pelagic food web. J. Limnol.70 (2): 263–271. CrossrefGoogle Scholar

  • Visconti A., Volta P., Fadda A., Di Guardo A. & Manca M. 2013. Seasonality, littoral vs. pelagic carbon sources and stepwise 15N-enrichment of pelagic food web in a deep subalpine lake: the role of planktivorous fish. Can. J. Fish. Aquat. Sci. 71 (3): 436–446. CrossrefGoogle Scholar

  • Visconti A., Volta P., Fadda A. & Manca M. 2013. Roach in Lake Maggiore: A peaceful invasion detected with C, N Stable Isotope Analysis. Glob. J. Sci. Front. Res. Agric. Vet.13 (9-D):1–7.Google Scholar

  • Wicklum D. 1999. Variation in horizontal zooplankton abundance in mountain lakes shore avoidance or fish predation? J. Plankton. Res. 21 (10): 1957–1975. CrossrefGoogle Scholar

  • Woodland R.J., Rodreguez M.A., Magnan P., Glèmet H. & Cabana G. 2012. Incorporating temporally dynamic baselines in isotopic mixing models. Ecology 93 (1): 131–144. CrossrefGoogle Scholar

  • Zohary T. & Ostrovsky I. 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Water 1 (1): 47–59. CrossrefGoogle Scholar

About the article

Received: 2015-12-07

Accepted: 2016-11-20

Published Online: 2017-01-11

Published in Print: 2016-12-01

Citation Information: Biologia, Volume 71, Issue 12, Pages 1395–1403, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0160.

Export Citation

© 2016 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in