Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 71, Issue 12


Diel activity and use of multiple artificially constructed shelters in Astacus leptodactylus (Decapoda: Astacidae)

Marius I. Groza
  • Department of Fundamental Sciences and Biotechnologies, Faculty of Zootechnics and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vlad Pop-Vancia
  • Department of Fundamental Sciences and Biotechnologies, Faculty of Zootechnics and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vioara Mireşan
  • Department of Fundamental Sciences and Biotechnologies, Faculty of Zootechnics and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-12 | DOI: https://doi.org/10.1515/biolog-2016-0167


Astacus leptodactylus is a widespread European crayfish species with both native and invasive populations. However, in spite of its wide distribution, studies regarding its activity seem to be lacking. Thus, our goal was to study its preference towards shelters built from natural and artificial materials and follow its activities throughout the day in order to understand its diel activity patterns. We analyzed the video recordings of diel activities for 20 individuals to find out more about this species routine in a captive environment. Every specimen spent 22 hours in an arena with 4 different kinds of shelters provided (stone, wood, PVC pipe, vegetation). We investigated time spent in every shelter and different activity patterns throughout the analysis period. A preference for stone and wooden shelters was clearly expressed by all the individuals, independent of sex and size. Most of the activity was concentrated in close proximity to the provided shelters. Individuals exhibited both daytime and nighttime activity, with the latter being more intense, although, specimens spent almost 85% of the entire time inside shelters. Crayfish used all available shelters during our trials, proving a wide flexibility of the species towards shelter type, but the frequency of visits and time spent inside certain type of shelter varied significantly. Our study brings novel information regarding narrow-clawed crayfish shelter preference and activity in the proximity of the shelters, highlighting the importance of natural refuges in its daily routine.

Key words: crayfish; shelter preference; day activity; tunnel-shape shelter; burrow


  • Aquiloni L., Ilhéu M. & Gherardi F. 2005. Habitat use and dispersal of the invasive crayfish Procambarus clarkn in ephemeral water bodies of Portugal. Mar Freshw. Behav. Physiol. 38 (4): 225–236. CrossrefGoogle Scholar

  • Aquiloni L., Tricarico E. & Gherardi F. 2010. Crayfish in Italy: distribution, threats and management. Int. Aquat. Res. 2 (1): 1–14.Google Scholar

  • Barbaresi S. & Gherardi F. 2001. Daily activity in the whiteclawed crayfish, Austropotamobius pallipes: a comparison between field and laboratory studies. J. Nat. Hist. 35 (12): 1861–1871. CrossrefGoogle Scholar

  • Barbaresi S., Santini G., Tricarico E. & Gherardi, F. 2004. Ranging behavior of the invasive crayfish Procambarus clarkii (Girard). J. Nat. Hist. 38 (22): 2821–2832. CrossrefGoogle Scholar

  • Belanger R.M. & Moore P.A. 2006. The use of the major chelae by reproductive male crayfish (Orconectes rusticus) for discrimination of female odours. Behaviour 143 (6): 713–731. CrossrefGoogle Scholar

  • Benvenuto C., Gherardi F. & Ilhéu M. 2008. Microhabitat use by the white-clawed crayfish in a Tuscan stream. J. Nat. Hist. 42 (1-2): 21–33. CrossrefGoogle Scholar

  • Bergman D.A. & Moore P.A. 2003. Field observations of intraspecific agonistic behaviour of two crayfish species, Orconectes rusticus and Orconectes virilis, in different habitats. Biol. Bull. 205 (1): 26–35. CrossrefGoogle Scholar

  • Bohl E. 1997. An isolated population of the white-clawed crayfish (Austropotamobius pallipes) in the Principality of Liechtenstein. Bull.Fr. Pęche Piscic. 347: 701–712. CrossrefGoogle Scholar

  • Briede I. 2011. Crayfish in Latvia. Acta Biol. Univ. Daugavp. 11 (1): 83–87.Google Scholar

  • Bubb D.H., Thom T.J. & Lucas M.C. 2004. Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshwater Biol. 49 (3): 357–368. CrossrefGoogle Scholar

  • Bubb D.H., Thom T.J. & Lucas M.C. 2006. Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshwater Biol. 51: 1359–1368. CrossrefGoogle Scholar

  • Bubb D.H., Thom T.J. & Lucas M.C. 2008. Spatial ecology of the white-clawed crayfish in an upland stream and implications for the conservation of this endangered species. Aquatic Conserv: Mar. Freshwater Ecosyst. 18 (5): 647–657. CrossrefGoogle Scholar

  • Buřič M., Kouba A. & Kozák P. 2009a. Spring mating period in Orconectes limosus: The reason for movement! Aquat. Sci. 71 (4): 473–477. CrossrefGoogle Scholar

  • Buřič M., Kozák P. & Kouba A. 2009b. Movement patterns and ranging behavior of the invasive spiny-cheek crayfish in a small reservoir tributary. Fundam. Appl. Limnol. 174 (4): 329–337. CrossrefGoogle Scholar

  • Byrne C.F., Lynch J.M. & Bracken J.J. 1999. A sampling strategy for stream populations of white-clawed crayfish, Austropotamobius pallipes (Lereboullet) (Crustacea, Astacidae). Biol. Environ. 99B (2): 89–94.Google Scholar

  • Capelli G.M. & Hamilton P.A. 1984. Effects of food and shelter on aggressive activity in the crayfish Orconectes rusticus (Girard). J. Crust. Biol. 4 (2): 252–260. CrossrefGoogle Scholar

  • Capelli G.M. & Magnuson J.J. 1983. Morphoedaphic and biogeographic analysis of crayfish distribution in northern Wisconsin. J. Crust. Biol. 3 (4): 548–564. CrossrefGoogle Scholar

  • Chucholl C., Stich H.B. & Maier G. 2008. Aggressive interactions and competition for shelter between a recently introduced and an established invasive crayfish: Orconectes immunis vs. O. limosus. Fundam. Appl. Limnol. 172 (1): 27–36. CrossrefGoogle Scholar

  • Clark J.M., Kershner M.W. & Holomuzki J.R. 2008. Grain size and sorting effects on size dependent responses by lotic crayfish to high flows. Hydrobiologia 610 (1): 55–66. CrossrefGoogle Scholar

  • Davis K.M. & Huber R. 2007. Activity patterns, behavioural repertoires, and agonistic interactions of crayfish: A nonmanipulative field study. Behaviour 144 (2): 229–247. CrossrefGoogle Scholar

  • Derraik J.G.B. 2012.The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44 (9): 842–852. CrossrefGoogle Scholar

  • Edmonds N.J., Riley W.D., Maxwell D.L. 2011. Predation by Pacifastacus leniusculus on the intra-gravel embryos and emerging fry of Salmo salar. Fisheries Manag. Ecol. 18 (6): 521–524.CrossrefGoogle Scholar

  • Englund G. & Krupa J.J. 2000. Habitat use by crayfish in stream pools: influence of predators, depth and body size. Freshwater Biol. 43 (1): 75–83. CrossrefGoogle Scholar

  • Fero K.C. & Moore P.A. 2008, Social spacing of crayfish in natural habitats: what role does dominance play? Behav. Ecol. Sociobiol. 62 (7): 1119–1125. CrossrefGoogle Scholar

  • Fero K.C. & Moore P.A. 2014. Shelter availability influences social behavior and habitat choice in crayfish, Orconectes virilis. Behaviour 151 (1): 103–123. CrossrefGoogle Scholar

  • Fidalgo M.L. Carvalho A.V. & Santos P. 2001. Population dynamics of the red swamp crayfish, Procambarus clarkii (Girard, 1852) from the Aveiro Region, Portugal (Decapoda, Cambaridae). Crustaceana 74 (4): 369–375. CrossrefGoogle Scholar

  • Franke R. & Hoerstgen-Schwark G. 2015. Lunar-rhythmic molting in laboratory populations of the noble crayfish Astacus astacus (Crustacea, Astacidea): An experimental analysis. PloS One 8 (7): e6865. CrossrefGoogle Scholar

  • Garvey J.E., Stein R.A. & Thomas H.M. 1994. Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology 75 (2): 532–547. CrossrefGoogle Scholar

  • Gherardi F., Barbaresi S. & Salvi G. 2000. Spatial and temporal patterns in the movement of the red swamp crayfish, Procambarus clarkii, an invasive crayfish. Aquat. Sci. 62 (2): 179–193. CrossrefGoogle Scholar

  • Gherardi F., Tricarico E. & Ilhéu M. 2002. Movement patterns of the invasive crayfish, Procambarus clarkii, in a temporary stream of southern Portugal. Ethology, Ecology & Evolution 14 (3): 183–197. CrossrefGoogle Scholar

  • Ghia D., Fea G., Spairania M., Berninia F. & Nardi P.A. 2009. Movement behaviour and shelter choice of the native crayfish Austropotamobius pallipes complex: survey on a population in a semi-natural pond in Northern Italy. Mar Freshw. Behav. Physiol. 42 (3): 167–185. CrossrefGoogle Scholar

  • Griffiths S.W., Collen P. & Armstrong, J.D. 2004. Competition for shelter among over-wintering signal crayfish and juvenile Atlantic salmon. J. Fish Biol. 65 (2): 436–447. CrossrefGoogle Scholar

  • Guan R.Z. 1994. Burrowing behaviour of signal crayfish, Pacifastacus leniusculus (Dana), in the River Great Ouse, England. Freshwater Forum 4 (3): 155–168.Google Scholar

  • Hirsch P., Burkhardt-Holm P., Töpfer I. & Fischer P. 2016. Movement patterns and shelter choice of spiny-cheek crayfish (Orconectes limosus) in a large lake’s littoral zone. Aquat. Invasions 11 (1): 55–65. CrossrefGoogle Scholar

  • Hogger J.B. 1988. Ecology, population biology and behaviour, pp.114–144. In: Holdich D.M. & Lowery R.S. (eds), Freshwater Crayfish: Biology, Management and Exploitation, Croom Helm, London, 498 pp. ISBN: 088192105XGoogle Scholar

  • Holdich D.M. 2002. Distribution of crayfish in Europe and some adjoining countries. Bull.Fr. Pęche Piscic. 367: 611–650. CrossrefGoogle Scholar

  • Holdich D.M., Reynolds J.D., Souty-Grosset C. & Sibley P.J. 2009. A review of the ever increasing threat to European crayfish from the non-indigenous crayfish species. Knowl. Managt. Aquatic Ecosyst. 394–395:11.CrossrefGoogle Scholar

  • Hudina S., Galić N., Roessink I. & Hock K. 2011. Competitive interactions between co-occurring invaders: identifying asymmetries between two invasive crayfish species. Biol. Invasions 13 (8): 1791–1803. CrossrefGoogle Scholar

  • Hudina S., Hock K., Radović A., Klobučar G., Petković J., Jelić M. & Maguire I. 2016. Species-specific differences in dynamics of agonistic interactions may contribute to the competitive advantage of the invasive signal crayfish (Pacifastacus leniusculus) over the native narrow-clawed crayfish (Astacus leptodactylus). Mar. Freshw. Behav. Physiol. 49 (3):147–157.CrossrefGoogle Scholar

  • Hudina S., Maguire I. & Klobucar G.I.V. 2008. Spatial dynamics of the noble crayfish (Astacus astacus, L.) in the Paklenica National Park. Knowl. Managt. Aquatic Ecosyst. 388: 01. CrossrefGoogle Scholar

  • Huner J.V. & Barr J.E. 1991. Red Swamp Crayfish: Biology and Exploitation. 3rd. ed. Lousiana Sea Grant College Program. Lousiana State University, Baton Rouge,128 pp.Google Scholar

  • Kouba A., Petrusek A. & Kozák P. 2014. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Managt. Aquatic Ecosyst 413: 05. CrossrefGoogle Scholar

  • Kouba A., Tíkal J., Císaf P., Veselý L., Fořt M., Příborský J., Patoka J. & Buřič M. 2016. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish. Sci. Rep. 6: 26569. .CrossrefGoogle Scholar

  • Kozák P., Gallardo J.M. & García J.C.E. 2009. Light preferences of red swamp crayfish (Procambarus clarkii). Hydrobiologia 636 (1): 499–503. CrossrefGoogle Scholar

  • Loughman Z.J., Skalican K.T. & Taylor N.D. 2013. Habitat selection and movement of Cambarus chasmodactylus (Decapoda: Cambaridae) assessed via radio telemetry. Freshwater Sci. 32 (4): 1288–1297. CrossrefGoogle Scholar

  • Lozán J.L. 2000. On the threat to the European crayfish: A contribution with the study of the activity behaviour of four crayfish species (Decapoda: Astacidae). Limnologica 30 (2): 156–166. CrossrefGoogle Scholar

  • Lynas J., Storey A.W. & Knott B. 2007. Aggressive interactions between three species of freshwater crayfish of the genus Cherax (Decapoda: Parastacidae). Mar. Freshw. Behav. Physiol. 40 (2): 105–116. CrossrefGoogle Scholar

  • Maguire I., Jelić M. & Klobučar G. 2011. Update on the distribution of freshwater crayfish in Croatia. Knowl. Managt. Aquatic Ecosyst 401: 31. CrossrefGoogle Scholar

  • Martin A.L. & Moore P.A. 2008. The influence of dominance on shelter preference and eviction rates in the crayfish, Orconectes rusticus. Ethology 114 (4): 175–188. CrossrefGoogle Scholar

  • Maude S.H. & Williams D.D. 1983. Behavior of crayfish in water currents: hydrodynamics of eight species with reference to their distribution patterns in southern Ontario. Can. J. Fish. Aquat. Sci. 40 (1): 68–77. CrossrefGoogle Scholar

  • McClain W.R. & Romaire R. P. 2007. Procambarid crawfish: life history and biology. Southern Regional Aquaculture Center, Publ. no. 2403, 6 pp.Google Scholar

  • Moore P.A. & Bergmann D.A. 2005. The smell of successand failure: The role of intrinsic and extrinsic chemical signals on the social behaviour of crayfish. Integr. Comp. Biol. 45 (4): 650–657. .CrossrefGoogle Scholar

  • Musil M., Buřič M., Policar T., Kouba A. & Kozák P. 2010. Comparison of day and night activity between noble (Astacus astacus) and spiny-cheek crayfish (Orconectes limosus). Freshwater Crayfish 17: 189–193.Google Scholar

  • Nakata K. & Goshima S. 2003. Competition for shelter of preferred sizes between the native crayfish species Cambaroides japonicus and the alien crayfish species Pacifastacus leniusculus in Japan in relation to prior residence, sex difference and body size. J. Crustacean Biol. 23 (4): 897–907. CrossrefGoogle Scholar

  • Naura M. & Robinson M.1998. Principles of using River Habitat Survey to predict the distribution of acquatic species: an example applied to the native white-clawed crayfish Austropotamobius pallipes. Aquatic Conserv: Mar. Freshwat. Ecosyst. 8 (4): 515–527. CrossrefGoogle Scholar

  • Panksepp J.B. & Huber R. 2004. Ethological analyses of crayfish behavior: a new invertebrate system for measuring the rewarding properties of psychostimulants. Behav. Brain Res. 153 (1): 171–180. CrossrefGoogle Scholar

  • Pârvulescu L., Palos C. & Molnar P. 2009. First record of the spiny-cheek crayfish Orconectes limosus (Rafinesque, 1817) (Crustacea: Decapoda: Cambaridae) in Romania. NorthWest. J. Zool. 5 (2): 424–428.Google Scholar

  • Pârvulescu L. & Zaharia C. 2014. Distribution and ecological preferences of noble crayfish in the Carpathian Danube basin: biogeographical insights into the species history. Hydrobiologia 726 (1): 53–63. CrossrefGoogle Scholar

  • Pârvulescu L., Zaharia C., Groza M.I., Csillik O., Satmari A. & Drăguţ L. 2016. Flash-flood potential:a proxy for crayfish habitat stability. Ecohydrology 9: 1507–1516. CrossrefGoogle Scholar

  • Ranta E. & Lindstrom K. 1993. Body size and shelter possession in mature signal crayfish, Pacifastacus leniusculus. Ann. Zool. Fenn. 30 (2): 125–132.Google Scholar

  • Renz M. & Breithaupt T. 2000. Habitat use of the crayfish Austropotamobius torrentium in small brooks and in Lake Constance, Southern Germany. Bull.Fr. Pęche Piscic. 356: 139–154. CrossrefGoogle Scholar

  • Robinson C.A., Thom T.J. & Lucas M.C. 2000. Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshwater Biol. 44 (3): 509–521. CrossrefGoogle Scholar

  • Simić V., Petrović A., Rajković M. & Paunović M. 2008. Crayfish of Serbia and Montenegro – the population status and the level of endangerment. Crustaceana 81 (10): 1153–1176. CrossrefGoogle Scholar

  • Statzner B., Fievet E., Champagne J.Y., Morel R. & Herouin E. 2000. Crayfish as geomorphic agents and ecosystem engineers: biological behavior affects sand and gravel erosion in experimental streams. Limnol. Oceanogr. 45 (5): 1030–1040. CrossrefGoogle Scholar

  • Streissl F. & Hödl W. 2002. Habitat and shelter requirements of the stone crayfish, Austropotamobius torrentium Schrank. Hydrobiologia 477 (1): 195–199. CrossrefGoogle Scholar

  • Stucki T.P. 2002. Differences in live history of native and introduced crayfish species in Switzerland. Freshwater Crayfish 13: 463–476.Google Scholar

  • Thomas J.R., James J., Newman R.C., Riley W.D., Griffiths S.W. & Cable J. 2015. The impact of streetlights on an aquatic invasive species: Artificial light at night alters signal crayfish behavior. Appl. Anim. Behav. Sci. 176: 143–149. CrossrefGoogle Scholar

  • Troschel H.J. 1997. Distribution and ecology of Austropotamobius pallipes in Germany. Bull. Fr. Pęche Piscic. 347: 639–647. CrossrefGoogle Scholar

  • Tulonen J., Erkamo E., Jussila J. & Mannonen A. 2008. Shelter and depth use of adult noble crayfish (Astacus astacus (L.)) and signal crayfish (Pacifastacus leniusculus (Dana)) in the presence of a predator. Freshwater Crayfish 16: 93–96.Google Scholar

  • Viau V.E. & Rodríguez E.M. 2010. Substrate selection and effect of different substrates on survival and growth of juveniles of the freshwater craynsh Cherax quadricarinatus (von Martens 1868) (Decapoda, Parastacidae). Aquacult. Int. 18 (5): 717–724. CrossrefGoogle Scholar

  • Vlach P., Fischer D. & Hulec L. 2009. Microhabitat preferences of the stone crayfish Austropotamobius torrentium (Schrank, 1803). Knowl. Managt. Aquatic Ecosyst. 394-395:15 CrossrefGoogle Scholar

  • Warte D.M. & Barmuta L.A. 2006. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150 (1): 141–154. CrossrefGoogle Scholar

  • Webb M. & Richardson A. 2004. A radio telemetry study of movement in the giant Tasmanian freshwater crayfish, Astacopsis gouldi. Freshwater Crayfish 14: 197–204.Google Scholar

  • Westman K. 1985. Effects of habitat modification on freshwater crayfish, pp. 245–255. In: Alabaster J.S. (ed.), Habitat Modifications and Freshwater Fisheries, European Inland Fisheries Advisory Commission, Butterworths, London, 287 pp. ISBN: 0-407-00418-1Google Scholar

  • Wutz S. & Geist J. 2013. Sex-and size-specific migration patterns and habitat preferences of invasive signal crayfish (Pacifastacus leniusculus Dana). Limnologica 43 (2): 59–66. CrossrefGoogle Scholar

About the article

Received: 2016-06-27

Accepted: 2016-12-08

Published Online: 2017-01-12

Published in Print: 2016-12-01

Citation Information: Biologia, Volume 71, Issue 12, Pages 1369–1379, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0167.

Export Citation

© 2016 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in