Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 71, Issue 12

Issues

Role of FIT2 in porcine intramuscular preadipocyte differentiation

Xiaoling Chen
  • Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yanliu Luo
  • Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gang Jia
  • Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hua Zhao
  • Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guangmang Liu
  • Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhiqing Huang
  • Corresponding author
  • Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-11 | DOI: https://doi.org/10.1515/biolog-2016-0169

Abstract

Fat-inducing transcript 2 (FIT2) plays an important role in the formation of intramuscular lipid droplets in skeletal muscle. However, its role in porcine intramuscular preadipocyte differentiation remains unclear. In the present study, a 789-bp fragment covering the complete coding region of porcine FIT2 (pFIT2) was obtained. Real-time quantitative PCR analysis indicated that pFIT2 mRNA was highly expressed in fat tissue. Overexpression of pFIT2 in porcine intramuscular preadipocytes led to an increase in lipid accumulation, which was detected by triglyceride content analysis. Overexpression of pFIT2 also significantly increased the protein expressions of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein-α (C/EBPα), but decreased the protein expression of β-catenin. We also found that the Wnt/β-catenin signaling specific activator LiCl attenuated the pFIT2-induced upregulation of PPARγ and downregulation of β-catenin. These findings implied that FIT2 promotes porcine intramuscular preadipocyte differentiation by repressing Wnt/β-catenin signaling.

Key words: porcine FIT2; porcine intramuscular preadipocytes; differentiation; Wnt/β-catenin signaling

References

  • Chen X.L., Zhou B., Huang Z.Q., Jia G., Liu G.M. & Zhao H. 2016. Tissue distribution of porcine FTO and its effect on porcine intramuscular preadipocytes proliferation and differentiation. PLoS One 11:e0151056.Google Scholar

  • Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2016. GenBank. Nucleic Acids Res. 44: D67–D72.Google Scholar

  • Gao S.Z. & Zhao S.M. 2009. Physiology, affecting factors and strategies for control of pig meat intramuscular fat. Recent Pat. Food. Nutr. Agric. 1:59–74.Google Scholar

  • Gardan D., Gondret F. & Louveau I. 2006. Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am. J. Physiol. Endocrinol. Metab. 291: E372–E380.Google Scholar

  • Gross D.A., Snapp E.L. & Silver D.L. 2010. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (fit) protein 2. PLoS One 5: e10796.Google Scholar

  • Gross D.A., Zhan C. & Silver D.L. 2011. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc. Natl. Acad. Sci. USA 108: 19581–19586.Google Scholar

  • Kadereit B., Kumar P., Wang W.J., Miranda D., Snapp E.L., Severina N., Torregroza I., Evans T. & Silver D.L. 2008. Evolutionarily conserved gene family important for fat storage. Proc. Natl. Acad. Sci. USA 105: 94–99.Google Scholar

  • Kennell J.A. & MacDougald O.A. 2005. Wnt signaling inhibits adipogenesis through β-catenin-dependent and -independent mechanisms. J. Biol. Chem. 280: 24004–24010.Google Scholar

  • Kim M.B., Song Y., Kim C. & Hwang J.K. 2014. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 445: 433–438.Google Scholar

  • Li C. & Zhou L. 2015. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol. In Vitro 30: 394–401.Google Scholar

  • Martin S. & Parton R.G. 2006. Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7: 373e378.Google Scholar

  • Miranda D.A., Kim J.H., Nguyen L.N., Cheng W., Tan B.C., Goh V.J., Tan J.S.Y., Yaligar J., KN B.P., Velan S.S., Wang H. & Silver D.L. 2014. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J. Biol. Chem. 289: 9560–9572.Google Scholar

  • Miranda D.A., Koves T.R., Gross D.A., Chadt A., Al-Hasani H., Cline G.W., Schwartz G.J., Muoio D.M. & Silver D.L. 2011. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2. J. Biol. Chem. 286: 42188–42199.Web of ScienceGoogle Scholar

  • Nguyen L.N., Hamari Z., Kadereit B., Trofa D., Agovino M., Martinez L.R., Gacser A., Silver D.L. & Nosanchuk J.D. 2011. Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microbes Infect. 13: 663–672.Google Scholar

  • Pang W.J., Bai L. & Yang G.S. 2006. Relationship among HFABP gene polymorphism, intramuscular fat content, and adipocyte lipid droplet content in main pig breeds with different genotypes in western China. Yi Chuan Xu Bao – Acta Genetica Sinica 33: 515–524.Google Scholar

  • Prestwich T.C. & MacDougald O.A. 2007. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr. Opin. Cell Biol. 19: 612–617.Google Scholar

  • Rosen E.D., Sarraf P., Troy A.E., Bradwin G., Moore K., Milstone D.S., Spiegelman B.M. & Mortensen R.M. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4: 611–617.Google Scholar

  • Ross S.E., Hemati N., Longo K.A., Bennett C.N., Lucas P.C., Erickson R.L. & MacDougald O.A. 2013. Inhibition of adipogenesis by Wnt signaling. Science 289: 950–953.Google Scholar

  • Wahli W. & Michalik L. 2012. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 23: 351–363.Google Scholar

  • Walther T.C., Farese R.V. & Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81: 687–714.Google Scholar

  • Willson T.M., Brown P.J., Sternbach D.D. & Henke B.R. 2000. The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43: 527–550.Google Scholar

About the article

Received: 2016-08-05

Accepted: 2016-12-27

Published Online: 2017-01-11

Published in Print: 2016-12-01


Citation Information: Biologia, Volume 71, Issue 12, Pages 1404–1409, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0169.

Export Citation

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in