Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 71, Issue 2

Issues

Effect of supplemental feeds on liver and intestine of common carp (Cyprinus carpio) in semi-intensive rearing system: histological implications

Božidar Rašković / Miloš Ćirić
  • University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11001 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vesna Koko / Marko Stanković / Ivana živić / Zoran Marković / Vesna Poleksić
Published Online: 2016-03-25 | DOI: https://doi.org/10.1515/biolog-2016-0017

Abstract

In order to determine effects of different types of supplementary feed on the histology of liver and intestine of carp reared in a semi-intensive system, a six-month field experiment was carried out. Carp yearlings were fed different supplemental feeds: cereals (CF), pelleted (PF) and extruded (EF) compound feeds. Hepatocytes histomorphometry revealed larger nuclear profile area of EF-fed fish compared to other two groups, while cytoplasmic profile area of the hepatocytes decreased in following sequence: CF > EF > PF. Lower nucleus/cytoplasm ratio was found in CF-fed fish compared to EF-and PF-fed fish. Striking, season dependant finding, was that regardless of the type of supplementary feed the number of lipid droplets in hepatocytes was highest in July and August, lipid depletion occurred in September and October, while glycogen was present in hepatocytes throughout the study. No size difference between groups was observed for enterocytes height, absorptive surface height and number of goblet cells in tunica mucosa, but a strong relationship between length of intestinal folds and fish weight was found. Histological analysis revealed a difference among three types of supplemental feed used in this field study: extruded or steam-pelleted feed induced better nutritional status of common carp in comparison to cereals. At the same time, histomorphometry indicated some differences between EF-and PF-fed fish.

Key words: common carp; supplementary feeding; hepatocytes; enterocytes; histomorphometry

References

  • Baeverfjord G. & Krogdahl A. 1996. Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J. Fish Dis. 19 (5): 375–387. DOI: 10.1046/j.1365-2761.1996.d01-92.xCrossrefGoogle Scholar

  • Boyd C.E. 1982. Water quality management of pond fish culture. Elsevier, Amsterdam, The Netherlands, 318 pp. ISBN-10: 0444420541, ISBN-13: 978-0444420541Google Scholar

  • Burel C., Boujard T., Tulli F. & Kaushik S.J. 2000. Digestibility of extruded peas, extruded lupin, and rapeseed meal in rainbow trout (Oncorhynchus mykiss)and turbot (Psetta maxima). Aquaculture 188 (3-4): 285–298. DOI: http://dx.doi.org/10.1016/S0044-8486(00)00337-9

  • Caballero M.J., Izquierdo M.S., Kjorsvik E., Fernandez A.J. & Rosenlund G. 2004. Histological alterations in the liver of sea bream, Sparus aurata L., caused by short-or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. J. Fish Dis. 27 (9): 531–541. DOI: 10.1111/j.1365-2761.2004.00572.xCrossrefGoogle Scholar

  • Caballero M.J., López-Calero G., Socorro J., Roo F.J., Izquierdo M.S. & Férnandez A.J. 1999. Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture 179: 277–290.Google Scholar

  • Couch J.A. 1993. Light and electron microscopic comparisons of normal hepatocytes and neoplastic hepatocytes of well-differentiated hepatocellular carcinomas in a teleost fish. Dis. Aquat. Org. 16 (1): 1–14.Google Scholar

  • Ćirić M., Subakov-Simić G., Dulić Z., BjelanovićK., Čičovački S. & Marković Z. 2015. Effect of supplemental feed type on water quality, plankton and benthos availability and carp (Cyprinus carpio L.) growth in semi-intensive monoculture ponds. Aquacult. Res. 46 (4): 777–788. DOI: 10.1111/are.12230CrossrefWeb of ScienceGoogle Scholar

  • Escaffre A., Kaushik S. & Mambrini M. 2007. Morphometric evaluation of changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) due to fish meal replacement with soy protein concentrate. Aquaculture 273 (1): 127–138. DOI: http://dx.doi.org/10.1016/j.aquaculture.2007.09.028Web of Science

  • Fishelson L. & Becker K. 2001. Development and aging of the liver and pancreas in the domestic carp, Cyprinus carpio: from embryogenesis to 15-year-old fish. Environ. Biol. Fishes 61 (1): 85–97. DOI: 10.1023/A:1011076722505Google Scholar

  • Foster G.D. & Moon T.W. 1991. Hypometabolism with fasting in the yellow perch (Perca flavescens): a study of enzymes, hepatocyte metabolism, and tissue size. Physiol. Zool. 64 (1): 259–275. DOI: 10.2307/30158523CrossrefGoogle Scholar

  • Francis G., Makkar H.P.S. & Becker K. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199 (3-4): 197–227. DOI: 10.1016/S0044-8486(01)00526-9CrossrefGoogle Scholar

  • Hardy R.W. 1996. Alternate protein sources for salmon and trout diets. Anim. Feed Sci. Technol. 59 (1-3): 71–80. DOI: 10.1016/0377-8401(95)00888-8CrossrefGoogle Scholar

  • Hlaváč D., Adámek Z., Hartman P. & Másílko J. 2014. Effects of supplementary feeding in carp ponds on discharge water quality: a review. Aquacult. Int. 22 (1): 299–320. DOI: 10.1007/s10499-013-9718-6CrossrefWeb of ScienceGoogle Scholar

  • Horváth L., Tamás G. & Seagreave C. 2002. Carp and pond fish culture. 2nded. Blackwell Science, Oxford, England, 188 pp. ISBN: 978-0-85238-282-0Google Scholar

  • Kamaszewski M., Napora-Rutkowski L. & Ostaszewska T. 2010. Effect of feeding on digestive enzyme activity and morphological changes in the liver and pancreas of pike-perch (Sander lucioperca). Israeli Journal of Aquaculture – Bamidgeh 62 (4): 225–236.Google Scholar

  • Krogdahl Å., Hemre G.I. & Mommsen T.P. 2005. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquacult. Nutr. 11 (2): 103–122. DOI: 10.1111/j.1365-2095.2004.00327.xCrossrefGoogle Scholar

  • Mandrioli L., Sirri R., Gatta P.P., Morandi F., Sarli G., Parma L., Fontanillas R. & Bonaldo A. 2012. Histomorphologic hepatic features and growth performances of juvenile Senegalese sole (Solea senegalensis) fed isogenertic practical diets with variable protein/lipid levels. J. Appl. Ichthyol. 28 (4): 628–632. DOI: 10.1111/j.1439-0426.2012.01938.xWeb of ScienceCrossrefGoogle Scholar

  • Manera M., Visciano P., Losito P. & Ianieri A. 2003. Farmed fish pathology: quality aspects. Vet. Res. Commun. 27 (Suppl. 1): 695–698. DOI: 10.1023/B:VERC.0000014250.43833.17CrossrefGoogle Scholar

  • Opstvedt J., Nygård E., Samuelsen T.A., Venturini G., Luzzana U. & Mundheim H. 2003. Effect on protein digestibility of different processing conditions in the production of fish meal and fish feed. J. Sci. Food Agric. 83 (8): 775–782. DOI: 10.1002/jsfa.1396CrossrefGoogle Scholar

  • Ostaszewska T., Dabrowski K., Hliwa P., Gomólka P. & Kwasek K. 2008. Nutritional regulation of intestine morphology in larval cyprinid fish, silver bream (Vimba vimba). Aquacult. Res. 39 (12): 1268–1278. DOI: 10.1111/j.1365-2109.2008.01989.xCrossrefGoogle Scholar

  • Ostaszewska T., Dabrowski K., Palacios M.E., Olejniczak M. & Wieczorek M. 2005. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture 245 (1-4): 273–286. DOI: 10.1016/j.aquaculture.2004.12.005CrossrefGoogle Scholar

  • Poleksić V., Stanković M., Marković Z., RelićR., LakićN., DulićZ. & Rašković B. 2014. Morphological and physiological evaluation of common carp (Cyprinus carpio L., 1758) fed extruded compound feeds containing different fat levels. Aquacult. Int. 22 (1): 289–298. DOI: 10.1007/s10499-013-9654-5CrossrefGoogle Scholar

  • Rasband W.S. 2011. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/, 1997– 2011.

  • Rašković B., Čičovački S., CirićM., MarkovićZ. & PoleksićV. 2016. Integrative approach of histopathology and histomorphometry of common carp (Cyprinus carpio L.) organs as a marker of general fish health state in pond culture. Aquacult. Res. DOI: CrossrefGoogle Scholar

  • RaškovićB., Jarić I., Koko V., Spasić M., DulićZ., Marković Z. & Poleksić V. 2013. Histopathological indicators: a useful fish health monitoring tool in common carp (Cyprinus carpio Linnaeus, 1758) culture. Cent. Eur. J. Biol. 8 (10):975–985. DOI: 10.2478/s11535-013-0220-yWeb of ScienceCrossrefGoogle Scholar

  • Raškovic B., Stanković M., DulićZ., MarkovićZ., LakićN. & Poleksić V. 2009. Effects of different source and level of protein in feed mixtures on liver and intestine histology of the common carp (Cyprinus carpio, Linnaeus, 1758). Comp. Bioch. Physiol. A Mol. Integr. Physiol. 153 (Suppl.2):S112. DOI: 10.1016/j.cbpa.2009.04.163CrossrefWeb of ScienceGoogle Scholar

  • Rašković B.S., Stanković M.B., Marković Z.Z. & PoleksićV.D. 2011. Histological methods in the assessment of different feed effects on liver and intestine of fish. J. Agric. Sci. 56 (1): 87–100. DOI: 10.2298/JAS1101087RCrossrefGoogle Scholar

  • Refstie S., Korsøen Ø.J., Storebakken T., Baeverfjord G., Lein I. & Roem A.J. 2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss)and Atlantic salmon (Salmo salar). Aquaculture 190 (1-2): 49–63. DOI: 10.1016/S0044-8486(00)00382-3CrossrefGoogle Scholar

  • Robaina L., Izquierdo M.S., Moyano F.J., Socorro J., Vergara J.M., Montero D. & Fernández-Palacios H. 1995. Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 130 (2-3): 219–233. DOI: 10.1016/0044-8486(94)00225-DCrossrefGoogle Scholar

  • Saraiva A., Costa J., Serrăo J., Cruz C. & Eiras J.C. 2015. A histology-based fish health assessment of farmed seabass (Dicentrarchus labrax L.). Aquaculture 448: 375–381. DOI: 10. 1016/j.aquaculture.2015.02.004CrossrefWeb of ScienceGoogle Scholar

  • Segner H. & Juario J.V. 1986. Histological observations on the rearing of milkfish, Chanos chanos, fry using different diets. J. Appl. Ichthyol. 2 (4): 162–172. DOI: 10.1111/j.1439-0426.1986.tb00658.xCrossrefGoogle Scholar

  • Shepherd C.J. & Jackson A.J. 2013. Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 83 (4): 1046–1066. DOI: 10.1111/jfb.12224Web of ScienceCrossrefGoogle Scholar

  • Shimeno S., Shikata T., Hosokawa H., Masumoto T. & Kheyyali D. 1997. Metabolic response to feeding rates in common carp, Cyprinus carpio.Aquaculture 151 (1): 371–377. DOI: http://dx.doi.org/10.1016/S0044-8486(96)01492-5

  • Sørensen M. 2012. A review of the effects of ingredient composition and processing conditions on the physical qualities of extruded high-energy fish feed as measured by prevailing methods. Aquacult. Nutr. 18 (3): 233–248. DOI: 10.1111/j.1365-2095.2011.00924.xCrossrefWeb of ScienceGoogle Scholar

  • Speare D.J. 2000. Liver diseases of tropical fish. Semin. Avian Exot. Pet. 9 (3): 174–178. DOI: http://dx.doi.org/10.1053/ax.2000.7132

  • Spisni E., Tugnoli M., Ponticelli A., Mordenti T. & Tomasi V. 1998. Hepatic steatosis in artificially fed marine teleosts. J. Fish Dis. 21 (3): 177–184. DOI: 10.1046/j.1365-2761.1998. 00089.xCrossrefGoogle Scholar

  • Stanković M.B., DulićZ.P. &Marković Z.Z. 2011. Protein sources and their significance in carp (Cyprinus carpio L.) nutrition. J. Agric. Sci. 56 (1): 75–86. DOI: 10.2298/JAS1101075SCrossrefGoogle Scholar

  • Stone D.A.J. 2003. Dietary carbohydrate utilization by fish. Rev. Fish. Sci. 11 (4): 337–369. DOI: 10.1080/10641260390260884CrossrefGoogle Scholar

  • Strüssmann C.A. & Takashima F. 1990. Hepatocyte nuclear size and nutritional condition of larval pejerrey, Odontesthes bonariensis (Cuvier et Valenciennes). J. Fish Biol. 36 (1): 59–65. DOI: 10.1111/j.1095-8649.1990.tb03519.xCrossrefGoogle Scholar

  • Svihus B., Uhlen A.K. & Harstad O.M. 2005. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Technol. 122 (3-4): 303–320. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2005.02.025

  • Urán P.A., Goncalves A.A., Taverne-Thiele J.J., Schrama J.W., Verreth J.A.J. & Rombout J.H.W.M. 2008. Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 25 (6): 751–760. DOI: 10.1016/j.fsi.2008.02.013.CrossrefGoogle Scholar

  • Weibel E.R., Kistler G.S. & Scherle W.F. 1966. Practical stereological methods for morphometric cytology. J. Cell Biol. 30 (1): 23–38. DOI: 10.1083/jcb.30.1.23CrossrefGoogle Scholar

  • Zakęś Z., Kowalska A., Demska-Zakęś K., Jeney G. & Jeney Z. 2008. Effect of two medicinal herbs (Astragalus radix and Lonicera japonica) on the growth performance and body composition of juvenile pikeperch [Sander lucioperca (L.)]. Aquacult. Res. 39 (11): 1149–1160. DOI: 10.1111/j.1365-2109.2008.01977.xCrossrefGoogle Scholar

  • Zheng Q., Wu Y. & Xu H. 2015. Effect of dietary oxidized konjac glucomannan on Schizothorax prenanti growth performance, body composition, intestinal morphology and intestinal microflora. Fish Physiol. Biochem. 41 (3): 733–743. DOI: 10.1007/s10695-015-0042-0.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-08-21

Accepted: 2015-12-16

Published Online: 2016-03-25

Published in Print: 2016-02-01


Citation Information: Biologia, Volume 71, Issue 2, Pages 212–219, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0017.

Export Citation

© 2016 Institute of Zoology, Slovak Academy of Sciences. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zoran Marković, Marko Stanković, Božidar Rašković, Zorka Dulić, Ivana Živić, and Vesna Poleksić
Aquaculture International, 2016, Volume 24, Number 6, Page 1699

Comments (0)

Please log in or register to comment.
Log in