Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year




Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 71, Issue 3

Issues

A conceptual model of new hypothesis on the evolution of biodiversity

Roberto Cazzolla Gatti
  • Corresponding author
  • Biological Diversity and Ecology Laboratory, Bio-Clim-Land Centre of Excellence, Tomsk State University (TSU), 36 Lenin Prospekt, Tomsk, 634050, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-20 | DOI: https://doi.org/10.1515/biolog-2016-0032

Abstract

The mechanisms that allow species to evolve, coexist, compete, cooperate or become extinct are becoming always more understood. At the same time, the factors that allow species to coexist in a given time within the same environment are still debated. Many theories and hypotheses suggest that competition tends to differentiate the ecological requirements after repeated interactions and to allow the presence of many different species in the same area (i.e. biodiversity). After all, a thorough understanding of the evolutionary dynamics of biodiversity, which could somehow explain the current distribution patterns and mechanisms of coexistence, must consider the biogeographic and phylogenetic approaches. Here I propose a new graphic model that reviews the past and present, and sometimes debated, trends in biodiversity and evolutionary science, pointing out the importance of the avoidance of competition, the biological history, the endogenosymbiosis and the three-dimensionality as the main forces that structure ecosystems and allow the evolution of biological diversity. This model is an attempt to explain and summarize some of the mechanisms that underlie the current presence of the awesome number of species that currently inhabit our planet.

Keywords: avoidance of competition; endogenosymbiosis; evolution; biodiversity; phenotypic plasticity; niches differentiation

References

  • Barraclough T.G. 2015. How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. 46: 25–48. DOI: 10.1146/annurev-ecolsys-112414-054030CrossrefGoogle Scholar

  • Barton N.H. & Charlesworth B. 1984. Genetic revolutions, founder effects, and speciation. Annu. Rev. Ecol. Evol. Syst. 15: 133–164. DOI: 10.1146/annurev.es.15.110184.001025CrossrefGoogle Scholar

  • Bertalanffy L. von 1934. Untersuchungen über die Gesetzlichkeit desWachstums. I. Allgemeine Grundlagen der Theorie; mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 131 (4): 613–652. DOI: 10.1007/BF00650112CrossrefGoogle Scholar

  • Bertalanffy L. von 1969. General System Theory: Foundations, Development, Applications. George Braziller, New York, xvi + 289 pp.Google Scholar

  • Bolnick D.I. & Fitzpatrick B.M. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38: 459–487. DOI: 10.1146/annurev.ecolsys.38.091206.095 804CrossrefGoogle Scholar

  • Branch G.M. 1975. Mechanisms reducing intraspecific competition in Patella spp.: migration, differentiation and territorial behaviour. J. Anim. Ecol. 44 (2): 575–600. DOI: 10.2307/3612CrossrefGoogle Scholar

  • Bruno J.F., Stachowicz J.J. & Bertness M.D. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18 (3): 119–125. DOI: 10.1016/S0169-5347(02)00045-9CrossrefGoogle Scholar

  • Cazzolla Gatti R.C. 2011. Evolution is a cooperative process: the biodiversity-related niches differentiation theory (BNDT) can explain why. Theoretical Biology Forum 104 (1): 35–43. PMID: 22220353Google Scholar

  • Cazzolla Gatti R. 2012. Biodiversity is a cauliflower under the sunlight. Nature Preceedings, precedings.nature.com. DOI: http://hdl.handle.net/10101/npre.2012.6917.1

  • Cazzolla Gatti R.C. 2014. Biodiversitá. In teoria e in pratica. I edizione ottobre 2014 – Libreria Universitaria it Edizioni [Biodiversity. In theory and in practice. 1st ed. October 2014]. Padova (Italy), 358 pp. ISBN: 978-88-6292-536-5Google Scholar

  • Chesson P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31: 343–366. DOI: 10.1146/annurev.ecolsys.31.1.343CrossrefGoogle Scholar

  • Connell J.H. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35 (2): 131–138. DOI: 10.2307/3544421CrossrefGoogle Scholar

  • Courtillot V. & Gaudemer Y. 1996. Effects of mass extinctions on biodiversity. Nature 381: 146–148. DOI: 10.1038/381146a0CrossrefGoogle Scholar

  • Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.). John Murray, London (UK), 502 pp.Google Scholar

  • Darwin C. & Wallace A.R. 1858. On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Zoological Journal of the Linnean Society 3: 46–50. DOI: 10.1111/j.1096-3642.1858.tb02500.xCrossrefGoogle Scholar

  • Didham R.K., Tylianakis J.M., Hutchison M.A., Ewers R.M. & Gemmell N.J. 2005. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20 (9): 470–474. DOI: 10.1016/j.tree.2005.07.006CrossrefGoogle Scholar

  • Durant S.M. 2000. Living with the enemy: avoidance of hyenas and lions by cheetahs in the Serengeti. Behav. Ecol. 11 (6): 624–632. DOI: 10.1093/beheco/11.6.624CrossrefGoogle Scholar

  • Eldredge N. & Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, pp. 82–115. In: Schopf T.J.M. (ed.), Models in Paleobiology, Freeman, Cooper & Co., San Francisco, 250 pp. ISBN-10: 0877353255, ISBN-13: 978-0877353256Google Scholar

  • Erwin D.H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proc. Natl. Acad. Sci. 98 (10): 5399–5403. DOI: 10.1073/pnas.091092698CrossrefGoogle Scholar

  • Felsenstein J. 1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35 (1): 124–138.Google Scholar

  • Forsey G.F. 2013. Fossil evidence for the escalation and origin of marine mutualisms. J. Nat. Hist. 47 (25-28): 1833–1864. DOI: 10.1080/00222933.2013.766276CrossrefGoogle Scholar

  • Gause G.F. 1934. The Struggle for Existence. Hafner Publishing Company, New York (USA), 163 pp.Google Scholar

  • Gavrilets S. & Losos J.B. 2009. Adaptive radiation: contrasting theory with data. Science 323 (5915): 732–737. DOI: 10.1126/science.1157966.CrossrefGoogle Scholar

  • Generoso W., Shelby M.D. & de Serres F.J. (eds) 1980. DNA Repair and Mutagenesis in Eukaryotes (Vol. 15). Springer Science & Business Media, Germany. 458 pp. ISBN: 978-1-4684-3844-4Google Scholar

  • Gorur G., Dickinson H. & Antonovics J. 1973. Theoretical considerations of sympatric divergence. Am Nat. 107 (954): 256–274. DOI: 10.1086/282829CrossrefGoogle Scholar

  • Gurevitch J. & Padilla D.K. 2004. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19 (9): 470–474. DOI: 10.1016/j.tree.2004.07.005CrossrefGoogle Scholar

  • Hamilton W.D. 2002. Narrow Roads of Gene Land. Vol. 2: Evolution of Sex. Oxford Univ. Press, Oxford, UK, 928 pp. ISBN-10: 0198503369, ISBN-13: 978-0198503361Google Scholar

  • Hardin G. 1960. The competitive exclusion principle. Science 131 (3409): 1292–1297. DOI: 10.1126/science.131.3409.1292CrossrefGoogle Scholar

  • Holmes E.E., Lewis M.A., Banks J.E. & Veit R.R. 1994. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75 (1): 17–29. DOI: 10.2307/1939378CrossrefGoogle Scholar

  • Hubbell S. 1980. Seed predation and the coexistence of tree species in tropical forests. Oikos 35 (2): 214–229. DOI: 10.2307/3544429CrossrefGoogle Scholar

  • Hubbell S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Vol. 32. Princeton University Press (USA). 392 pp. ISBN: 9780691021287Google Scholar

  • Hubert N., Calcagno V., Etienne R.S. & Mouquet N. 2015. Metacommunity speciation models and their implications for diversification theory. Ecol. Lett. 18 (8): 864–881. DOI: 10.1111/ele.12458CrossrefGoogle Scholar

  • Hutchinson G.E. 1961. The paradox of plankton. Am. Nat. 95 (882.): 137–146. DOI: 10.1086/282171CrossrefGoogle Scholar

  • Jackson J.B.C. & Johnson K.G. 2001. Measuring past biodiversity. Science 293 (5539): 2401–2403. DOI: 10.1126/science. 1063789CrossrefGoogle Scholar

  • Kirkpatrick M. & Ravigne V. 2002. Speciation by natural and sexual selection: Models and experiments. Am. Nat. 159 (S3): S22–S35. DOI: 10.1086/338370CrossrefGoogle Scholar

  • Kottelat M. 1995. Systematic studies and biodiversity: the need for a pragmatic approach. J. Nat. Hist. 29 (3): 565–569. DOI: 10.1080/00222939500770181CrossrefGoogle Scholar

  • Lambin X., Aars J. & Piertney S.B. 2001. Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. Part 2, pp. 110–122. In: Clobert J., Danchin E., Dhondt A.A. & Nichols J.D. (eds), Dispersal, Oxford University Press, Oxford, 480 pp. ISBN-10: 0198506597, ISBN-13: 9780198506591Google Scholar

  • Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87 (836): 331–333. DOI: 10.1086/281792CrossrefGoogle Scholar

  • Levine J.M. & HilleRisLambers J. 2009. The importance of niches for the maintenance of species diversity. Nature 461: 254–257. DOI: 10.1038/nature08251CrossrefGoogle Scholar

  • MacArthur R.H. & Wilson E.O. 1967. The Theory of Island Biogeography. Vol. 1. Princeton University Press (USA), 203 pp. ISBN: 0691088365, 9780691088365Google Scholar

  • Margulis L. & Sagan D. 2008. Acquiring Genomes: A Theory of the Origins of Species. Basic Books (USA), 256 pp. ISBN: 0786722606, 9780786722600Google Scholar

  • Maynard Smith J. 1966. Sympatric speciation. Am. Nat. 100 (916): 637–650. DOI: 10.1086/282457CrossrefGoogle Scholar

  • McCann K.S. 2000. The diversity–stability debate. Nature 405 (6783): 228–233. DOI: 10.1038/35012234CrossrefGoogle Scholar

  • Meyerson L.A. & Mooney H.A. 2007. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5 (4): 199–208. DOI: 10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2CrossrefGoogle Scholar

  • Nowak M.A., Tarnita C.E. & Wilson E.O. 2010. The evolution of eusociality. Nature 466 (7310): 1057–1062. DOI: 10.1038/nature09205CrossrefGoogle Scholar

  • Nuismer S.L. & Harmon L.J. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18 (1): 17–28. DOI: 10.1111/ele.12384CrossrefGoogle Scholar

  • Pilkey O.H. & Pilkey-Jarvis L. 2007. Useless Arithmetic: Why Environmental Scientists can’t Predict the Future. Columbia University Press (USA), 248 pp. ISBN: 9780231506991Google Scholar

  • Platnick N.I. 1991. Patterns of biodiversity: tropical vs temperate. J. Nat. Hist. 25 (5): 1083–1088. DOI: 10.1080/0022293 9100770701CrossrefGoogle Scholar

  • Purvis A. & Hector A. 2000. Getting the measure of biodiversity. Nature 405 (6783): 212–219. DOI: 10.1038/35012221CrossrefGoogle Scholar

  • Raxworthy C.J., Ingram C., Rabibisoa N. & Pearson R.G. 2007. Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst. Biol. 56 (6): 907–923. DOI: 10.1080/10635150701775111CrossrefGoogle Scholar

  • Richardson J.L., Urban M.C., Bolnick D.I. & Skelly D.K. 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29 (3): 165–176. DOI: 10.1016/j.tree.2014.01.002CrossrefGoogle Scholar

  • Rissler L.J. & Apodaca J.J. 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst. Biol. 56 (6): 924–942. DOI: 10.1080/10635150701703063CrossrefGoogle Scholar

  • Sachs J.L., Mueller U.G., Wilcox T.P. & Bull J.J. 2004. The evolution of cooperation. Q. Rev. Biol. 79 (2): 135–160. DOI: 10.1086/386571CrossrefGoogle Scholar

  • Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14 (3): 255–274. DOI: 10.1016/0022-5193(67)90079-3CrossrefGoogle Scholar

  • Seehausen O., Butlin R.K., Keller I., Wagner C.E., Boughman J.W., Hohenlohe P.A., Peichel C.L., Saetre G.P., Bank C., Brännström A., Brelsford A., Clarkson C.S., Eroukhmanoff F., Feder J.L., Fischer M.C., Foote A.D., Franchini P., Jiggins C.D., Jones F.C., Lindholm A.K., Lucek K., Maan M.E., Marques D.A., Martin S.H., Matthews B., Meier J.I., Möst M., Nachman M.W., Nonaka E., Rennison D.J., Schwarzer J., Watson E.T., Westram A.M. & Widmer A. 2014. Genomics and the origin of species. Nature Rev. Genet. 15 (3): 176–192. DOI: 10.1038/nrg3644CrossrefGoogle Scholar

  • Smith J.M. 1978. The Evolution of Sex. Cambridge Univ. Press, Cambridge, 236 pp. ISBN: 9780521293020Google Scholar

  • Smith, J.M., 1998. Evolutionary Genetics (2nd ed.). Oxford: Oxford U. Pr. (UK), 354 pp. ISBN-10: 0198502311, ISBN-13: 978-0198502319Google Scholar

  • Sommer U. & Worm B. (eds) 2002. Competition and Coexistence. Ecological Studies, Vol. 161, Analysis and Synthesis. Springer Science & Business Media (Germany), 224 pp. ISBN: 978-3-642-62800-9 DOI: 10.1007/978-3-642-56166-5CrossrefGoogle Scholar

  • Templeton A.R. 1981. Mechanisms of speciation – a population genetics approach. Annu. Rev. Ecol. Syst. 12: 23–48. DOI: 10.1146/annurev.es.12.110181.000323CrossrefGoogle Scholar

  • Tilman D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. 101 (30): 10854–10861. DOI: 10.1073/pnas.0403458101CrossrefGoogle Scholar

  • Via S., Gomulkiewicz R., De Jong G., Scheiner S.M., Schlichting C.D. & Van Tienderen P.H. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10 (5): 212–217. DOI: 10.1016/S0169-5347(00)89061-8CrossrefGoogle Scholar

  • Wade M.J. 2007. The co-evolutionary genetics of ecological communities. Nature Rev. Genet. 8: 185–195. DOI: 10.1038/nrg2031CrossrefGoogle Scholar

  • Wagner A. 2012. The role of robustness in phenotypic adaptation and innovation. Proc. Roy. Soc. London B: Biol. Sci. 279 (1732): 1249–1258. DOI: 10.1098/rspb.2011.2293CrossrefGoogle Scholar

  • Wauters L., Tosi G. & Gurnell J. 2005. A review of the competitive effects of Grey Squirrell on behaviour, activity and habitat use of Red Squirrell in mixed deciduous woodland in Italy. Hystrix It. J. Mamm. 16 (1): 27–40. DOI: doi:10.4404/hystrix-16.1-4340CrossrefGoogle Scholar

  • Wilson E.O. & Peter F.M. (eds) 1988. Biodiversity. National Academy of Sciences (U.S.), Smithsonian Institution (USA), 521 pp. ISBN: 0-309-03783-2Google Scholar

  • Wright J.S. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130 (1): 1–14. DOI: 10.1007/s004420100809CrossrefGoogle Scholar

About the article

Received: 2015-07-27

Accepted: 2016-02-04

Published Online: 2016-04-20

Published in Print: 2016-03-01


Citation Information: Biologia, Volume 71, Issue 3, Pages 343–351, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0032.

Export Citation

© 2016 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Roberto Cazzolla Gatti, Brian Fath, Wim Hordijk, Stuart Kauffman, and Robert Ulanowicz
Journal of Theoretical Biology, 2018
[3]
R. Cazzolla Gatti, G. Messina, M. Ruggieri, V. Dalla Nora, and B. M. Lombardo
The European Zoological Journal, 2018, Volume 85, Number 1, Page 210
[5]
Roberto Cazzolla Gatti and Claudia Notarnicola
Global Ecology and Conservation, 2018, Volume 13, Page e00361
[7]
Roberto Cazzolla Gatti, Arianna Di Paola, Antonio Bombelli, Sergio Noce, and Riccardo Valentini
Plant Ecology, 2017, Volume 218, Number 7, Page 899
[8]
R Cazzolla Gatti, G Vaglio Laurin, and R Valentini
iForest - Biogeosciences and Forestry, 2017, Volume 10, Number 2, Page 362
[9]
Roberto Cazzolla Gatti, Wim Hordijk, and Stuart Kauffman
Ecological Modelling, 2017, Volume 346, Page 70
[10]
Roberto Cazzolla Gatti
International Journal of Environmental Studies, 2016, Volume 73, Number 6, Page 887

Comments (0)

Please log in or register to comment.
Log in