Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

See all formats and pricing
More options …
Volume 71, Issue 3


The assessment of seasonal variability in emergent macrophyte communities

Dragana D. Jenačković
  • Corresponding author
  • Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivana D. Zlatković
  • College of Agriculture and Food Technology, Prokuplje, Ćirila i Metodija 1, 18400 Prokuplje, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitar V. Lakušić
  • Institute of Botany and Botanical Garden Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir N. Ranđelović
  • Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-20 | DOI: https://doi.org/10.1515/biolog-2016-0033


Data on seasonal variability in emergent macrophyte communities in regard to the composition of statistically significant indicator species remain incomplete. It was recognized by the authors as a potentially significant scientific issue and was defined as the main objective of this study. Information on the floristic composition of the communities included in this paper were collected in the Central Balkan Peninsula. Using a combination of cluster analysis and indicator species analysis, 11 emergent macrophyte communities were established. The seasonal dynamic of these communities did not include statistically significant modification of either the floristic composition or the species abundances according to the results of permutational multivariate analysis of variance (PERMANOVA). Nevertheless, seasonal variability in three communities –the Sparganium erectum community, Scirpus lacustris community and Typha angustifolia community – was registered in regard to the composition of their statistically significant indicator species. Disturbances primarily related to water level fluctuation in their habitats initiated a significant increase or decrease in the abundances of particular species. These slight structural changes were sufficient to induce a changeability in these communities in terms of the composition of their statistically significant indicator species over the growing season without a significant impact on the PERMANOVA results. This relatively “concealed” changeability of plant communities could have serious consequences on the processes of both defining and describing vegetation units because the indicator species are often used as “diagnostic species”. Consequently, future ecological studies should be more focused on investigating seasonal variability in diverse vegetation types in order extend our knowledge in this area.

Keywords: emergent macrophyte communities; indicator species; seasonal variability


  • Anderson M.J., Gorley R.N. & Clarke K.R. 2007. Permanova+ for Primer: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, United Kingdom, 214 pp.Google Scholar

  • Anonymous 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. The Council of the European Communities.Google Scholar

  • Babić N. 1971. Močvarna i livadska vegetacija Koviljskog rita. Zbornik Matice srpske, Ser. prirodnih nauka, Novi Sad 41: 19–87.Google Scholar

  • Braun-Blanquet J. 1951. Pflanzensoziologie. Springer, Wien.Google Scholar

  • Campbell C.J., Johns C.V. & Nielsen D.L. 2014. The value of plant functional groups in demonstrating and communicating vegetation responses to environmental flows. Freshwater Biol. 59: 858–869.Google Scholar

  • Casanova M.T. & Brock M.A. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol. 147: 237–250.Google Scholar

  • Chytrý M., Tichý L., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90.Google Scholar

  • Davies C.E., Moss D. & Hill M.O. 2004. EUNIS habitat classification revised 2004. Report to European Environment Agency-European Topic Centre on Nature Protection and Biodiversity, pp. 127–143.Google Scholar

  • Dufręne M. & Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366.Google Scholar

  • Gradstein S.R. & Smittenberg J.H. 1977. The hydrophilous vegetation of western Crete. Vegetatio 34: 65–86.Google Scholar

  • Greet J.O.E., Webb J.A. & Downes B.J. 2011. Flow variability maintains the structure and composition of in-channel riparian vegetation. Freshwater Biol. 56: 2514–2528.Google Scholar

  • Hejný S., Segal S. & Raspopov I.M. 1998. General ecology of wetlands, pp. 1–77. In: Westlake D.F., Květ J. & Szczepański L.A. (eds), The Production Ecology of Wetlands: the IBP synthesis, Cambridge University Press, United Kingdom.Google Scholar

  • Hrivnák R. 2004. The plant communities of Phragmitetalia in the catchment area of the Ipel’river (Slovakia and Hungary) 1. Reed wetlands (Phragmition communis). Biologia 59: 75–99.Google Scholar

  • Hrivnák R. 2005. Effect of ecological factors on the zonation of wetland vegetation. Acta Soc. Bot. Pol. 74: 73–81.Google Scholar

  • Hrivnák R., Oťaheľová H. & Gömöry D. 2009. Seasonal dynamics of macrophyte abundance in two regulated streams. Cent. Eur. J. Biol. 4: 241–249.Google Scholar

  • Hroudová Z., Zákravský P., Ducháček M. & Marhold K. 2007. Taxonomy, distribution and ecology of Bolboschoenus in Europe. Ann.Bot.Fenn. 44: 81–102.Google Scholar

  • Janković M. 1953. Vegetacija velikog blata. Glas. prirod. Muz. srp. Zem., ser. B, 5–6: 59–111.Google Scholar

  • Jasprica N., Carić M. & Batistić M. 2003. The Marshland Vegetation (Phragmito-Magnocaricetea, Iso¨eto-Nanojuncetea)and Hydrology in the Hutovo Blato Natural Park (Neretva River Delta, Bosnia and Herzegovina). Phyton, Horn, Austria 43: 281–294.Google Scholar

  • Jenačković D., Dimitrijević D. & Ranđelović V. 2010. Macrophytic flora and vegetation of the rivers Svrljiški and Beli Timok (Eastern Serbia). Biologica Nyssana 1: 23–26.Google Scholar

  • Johnson R.K. 2001. Indicator metrics and detection of impact, pp. 41–44. In: Karttunen K. (ed.), Monitoring and Assessment of Ecological Status of Aquatic Environments, Nordic Council of Ministers.Google Scholar

  • Jovanović R. 1958. Tipovi močvarne vegetacije u Jasenici. Zbornik Biol. Inst. NR Srbije 2: 1–36.Google Scholar

  • Kamberović J., Barudanović S., Maši E. & Dedić A. 2014. Marshland vegetation of the order Phragmitetalia on shores of mine pit lakes in north-eastern Bosnia and Herzegovina. Biologica Nyssana 5: 1–10.Google Scholar

  • Karadžić B. 2013. FLORA: a Software Package for Statistical Analysis of Ecological Data. Water Res. Managem. 3: 45–54.Google Scholar

  • Keddy P.A. & Reznicek A.A. 1986. Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. J. Great Lakes Res. 12: 25–36.Google Scholar

  • Kochev H. & Jordanov D. 1981. Vegetation of water basins in Bulgaria. Ecology, protection and economic importance, Publishing House of the Bulgarian Academy of Science, Sofia.Google Scholar

  • Lakušić R. & Pavlović D. 1976. Vegetacija Skadarskog jezera. Glas. Republ. zavoda za zaštitu prirode i prirodnjačkog muzeja Titograd 9: 45–50.Google Scholar

  • Lakušić R., Pavlović D., Abadžić S. & Grgić P. 1977. Prodromus biljnih zajednica Bosne i Hercegovine. God. biol. Inst. Univ. Sarajevo 30: 1–87.Google Scholar

  • Landucci F., Gigante D., Venanzoni R. & Chytrý M. 2013. Wetland vegetation of the class Phragmito-Magno-Caricetea in central Italy. Phytocoenologia 43: 67–102.Google Scholar

  • Lapointe L. 2001. How phenology influences physiology in deciduous forest spring ephemerals. Physiol. Plantarum 113: 151–157.Google Scholar

  • Lepš J. & Šmilauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, United Kingdom, Cambridge.Google Scholar

  • Mackey R.L. & Currie D.J. 2001. The diversity-disturbance relationship: is it generally strong and peaked? Ecology 82: 3479–3492.Google Scholar

  • McCune B. & Mefford M.J. 2011. PC-ORD. Multivariate Analysis of Ecological Data. Version 6. MjM Software, Gleneden Beach, Oregon, United States of America.Google Scholar

  • Micevski K. 1963. Tipološki istražuvanja na blatnata vegetacija vo Makedonija, God. zbor. PMF-biologija, Skopje, 14: 79–130.Google Scholar

  • Molina J.A. & Moreno P.S. 2003. Diversity of the helophytic vegetation in Spain. Acta Bot. Gallica 150: 167–193.Google Scholar

  • Mucina L. 1997. Conspectus of classes of European vegetation. Folia Geobot. 32: 117–172.Google Scholar

  • Mueller-Dombois D. & Ellenberg H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York, 547 pp.Google Scholar

  • Nowak A., Nowak S. & Nobis M. 2014. Diversity and distribution of rush communities from the Phragmito-Magno-Caricetea D.D. Jenačković et al. class in Pamir Alai mountains (Middle Asia: Tajikistan). Pakistan J. Bot. 46: 27–64.Google Scholar

  • Nygaard B. & Ejrnès R. 2009. The impact of hydrology and nutrients on species composition and richness: evidence from a microcosm experiment. Wetlands 29: 187–195.Google Scholar

  • O’Donnell J., Fryirs K. & Leishman M. 2014. Digging deep for diversity: riparian seed bank abundance and species richness in relation to burial depth. Freshwater Biol. 59: 100–113.Google Scholar

  • Ostendorp W., Jöhnk K.D. & Schmieder K. 2004. Assessment of human pressures and their hydromorphological impacts on lakeshores in Europe. Int. J. Ecohydrol. Hydrobiol. 4: 379–395.Google Scholar

  • Pełechaty M. 2006. Spatial heterogeneity of physical-chemical properties of substratum and sediment of a shallow lake (Lake Jarosławieckie, Wielkopolski National Park). Limnol. Rev. 6: 247–254.Google Scholar

  • Ranđelović V., Matejić J. & Zlatković B. 2007a. Flora and vegetation of Batušinačke swamps near Niš. Proceeding of the 9th Symposium on Flora of Southeastern Serbia and Neighbouring Regions, Niš (Serbia), pp. 19–40.Google Scholar

  • Ranđelović V., Zlatković B. & Matejić J. 2007b. Swamp vegetation of order Phragmitetalia in southeastern Serbia. Proceeding of the 9th Symposium on Flora of Southeastern Serbia and Neighbouring Regions, Niš (Serbia), pp. 9–18.Google Scholar

  • RanđelovićV. & Zlatković B. 2010. Flora i vegetacija Vlasinske visoravni. Faculty of Sciences and Mathematics, University of Niš, 448 pp.

  • Riis T. & Biggs B.J.F. 2001. Distribution of macrophytes in New Zealand streams and lakes in relation to disturbance frequency and resource supply-a synthesis and conceptual model. New Zeal. J. Mar. Fresh. 35: 255–267.Google Scholar

  • Rivas-Martínez S. 2004. Global bioclimatics (version 22-0404). Phytosociological Research Center. http://www.global bioclimatics.org/form/maps.htm

  • Santo D.E. & Arsénio P. 2005. Influence of land use on the composition of plant communities from seasonal pond ecosystems in the Guadiana Valley Natural Park (Portugal). Phytocoenologia 35: 267–281.Google Scholar

  • Slavnić Z. 1956. Vodena i barska vegetacija Vojvodine. Zbornik čMatice srpske, Ser.prirodnih nauka, NoviSad 10: 5–72.Google Scholar

  • Stančić Z. 2007. Marshland vegetation of the class Phagmito-Magnocaricetea in Croatia. Biologia 62: 297–314.Google Scholar

  • Stančić Z. 2010. Marshland vegetation of the class Phragmito-Magnocaricetea in northwest Croatia (Krapina river valley). Biologia 65: 39–53.Google Scholar

  • StatSoft 2007. Statistica for Windows, version 8.0. StatSoft Inc., Tulsa.Google Scholar

  • Stefanidis K. & Papastergiadou E. 2013. Effects of a long term water level reduction on the ecology and water quality in an eastern Mediterranean lake. Knowl. Manag. Aquat. Ec. 411: 1–14.Google Scholar

  • StojanovićS., ButoracB. & Vučković M. 1987. Pregled barske i močvarne vegetacije Vojvodine. Glas. Inst. Bot. Botan. Bašte Univ. Beograd 21: 41–47.Google Scholar

  • Sutela T., Aroviita J. & Keto A. 2013. Assessing ecological status of regulated lakes with littoral macrophyte, macroinvertebrate and fish assemblages. Ecol. Indic. 24: 185–192.Google Scholar

  • Svitok M., Hrivnák R., Oťaheľová H., Dúbravková D., Paľove-Balang P. & Slobodník V. 2011. The importance of local and regional factors on the vegetation of created wetlands in central Europe. Wetlands 31: 663–674.Google Scholar

  • Tichý L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453.Google Scholar

  • Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. & Webb D.A. (eds), 1964–1980. Flora Europaea, I-V. Cambridge University Press, United Kingdom.Google Scholar

  • Van der Maarel E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–144.Google Scholar

  • Van der Valk A.G. 2005. Water-level fluctuations in North American prairie wetlands. Hydrobiologia 539: 171–188.Google Scholar

  • Van Geest G.J., Coops H., Roijackers R.M.M., Buijse A.D. & Scheffer M. 2005. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. J. Appl. Ecol. 42: 251–260.Google Scholar

  • Venterink H.O., Davidsson T.E., Kiehl K. & Leonardson L. 2002. Impact of drying and re-wetting on N, P and K dynamics in a wetland soil. Plant Soil 243: 119–130.Google Scholar

  • Vymazalová M., Axmanová I. & Tichý L. 2012. Effect of intra-seasonal variability on vegetation data. J. Veg. Sci. 23: 978–984.Google Scholar

  • Vymazalová M., Tichý L. & Axmanová I. 2014. How does vegetation sampling in different parts of the growing season influence classification results and analyses of beta diversity? Appl. Veg. Sci. 17: 556–566.Google Scholar

  • Wilcox D.A. & Nichols S.J. 2008. The effects of water-level fluctuations on vegetation in a lake Huron wetland. Wetlands 28: 487–501.Google Scholar

  • Wilson J.B. 2012. Species presence/absence sometimes represents a plant community as well as species abundances do, or better. J. Veg. Sci. 23: 1013–1023.Google Scholar

  • Zohary T. & Ostrovsky I. 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1: 47–59.Google Scholar

About the article

Received: 2015-12-04

Accepted: 2016-02-26

Published Online: 2016-04-20

Published in Print: 2016-03-01

Citation Information: Biologia, Volume 71, Issue 3, Pages 287–297, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0033.

Export Citation

© 2016 Institute of Botany, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dragana D. Jenačković, Ivana D. Zlatković, Dmitar V. Lakušić, and Vladimir N. Ranđelović
Aquatic Botany, 2016, Volume 134, Page 1

Comments (0)

Please log in or register to comment.
Log in