Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 71, Issue 3


Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland

Agnieszka Józefowska
  • Corresponding author
  • Department of Soil Science and Soil Protection, Agriculture and Economy Faculty, University of Agriculture in Krakow, Al. Mickiewicza 21, 30-120 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Miechówka
  • Department of Soil Science and Soil Protection, Agriculture and Economy Faculty, University of Agriculture in Krakow, Al. Mickiewicza 21, 30-120 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Frouz
  • Institute for Environmental Studies, Faculty of Science, Charles University in Prague, José Martího 407/2, CZ 6200 Prague 6, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-20 | DOI: https://doi.org/10.1515/biolog-2016-0035


The impact of different geographical regions (Silesian Foothills, region 1 and Maly Beskids, region 2), and method of soil use (arable field and grassland) on the main soil properties and biological activity was studied. Earthworm biomass, density and diversity, as well as dehydrogenase activity, were analysed. Significant soil physical and chemical properties were more affected by regions, whereas the type of land use had a greater impact on the biological properties. The mean earthworm density was 213 ind. m−2 and 241 ind. m−2 in grassland, and 50 ind. m−2 and 120 ind. m−2 in arable field, in region 1 and 2, respectively. Eight earthworm species were recorded, and fewer species were recorded in arable field (1–4) than in grassland (6–7). The Silesian Foothills are a new habitat for the occurrence of the speciesFitzingeria platyura depressa. A high earthworm density was accompanied by high microbial activity, and dehydrogenase activity was lower in the soil of arable field than in grassland soil.

Keywords: earthworms; arable and grassland fields; Fitzingeria platyura depressa


  • Blake G.R. & Hartge K.H. 1986. Particle density, Chapter 14, pp. 377–382. DOI: 10.2136/sssabookser5.1.2ed.c14. In: Klute A. (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. 2nd ed. Series Agronomy, Number 9 (Part 1), SSSA Book Series 5, American Society of Agronomy, Madison, Wisconsin, USA, 1188 pp. ISBN-13: 978-0-89118-811-7, ISBN-10: 0-89118-811-8CrossrefGoogle Scholar

  • Bongers T. & Ferris H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14 (6) 224–228. DOI: doi:10.1016/S0169-5347(98)01583-3CrossrefGoogle Scholar

  • Brito-Vega H., Espinosa-Victoria D., Fragoso C., Mendoza D., De la Cruz Landero N. & AldereteChavez A. 2009. Soil organic matter particle and presence of earthworm under different tillage systems. J. Biol. Sci. 9 (2): 180–183. DOI: 10.3923/jbs.2009.180.183CrossrefGoogle Scholar

  • Brookes P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils 19 (4): 269– 279. DOI: 10.1007/BF00336094CrossrefGoogle Scholar

  • Brzezińska M. & Wlodarczyk T. 2006. Methods of soil catalase and dehydrogenase activity measurement, pp. 59–74. In: Russel S., Wyczó_lkowski A.I. & Bieganowski A. (eds), Selected Methodological Aspects of Soil Enzyme Activity Tests, IA PAS, Lublin. 74 pp. ISBN-10: 83-89969-70-X, ISBN-13: 978-83-89969-70-5Google Scholar

  • Casida L.E.J., Klein D.A. & Santoro T. 1964. Soil dehydrogenase activity. Soil Sci. 98 (6): 371–376. Ciarkowska K., So_lek-Podwika K. & Wieczorek J. 2014. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing region. J. Environ. Manage. 132: 250–256. DOI: 10.1016/j.jenvman.2013.10.022CrossrefGoogle Scholar

  • Csuzdi C., Pop V. & Pop A. 2011. The earthworm fauna of the Carpathian Basin with new records and description of three new species (Oligochaeta: Lumbricidae). Zool. Anz. 250 (1): 2–18. DOI: 10.1016/j.jcz.2010.10.001CrossrefGoogle Scholar

  • Curry J.P. 2004. Factors affecting the abundance of earthworms in soils, Chapter 6, pp. 91–113Edwards C.A. (ed.), Earthworm Ecology, 2nd ed., CRC Press LLC, Boca Raton, 448 pp. ISBN: 0-8493-1819-XGoogle Scholar

  • de Vries F.T., Thébault E., Liiri M., Birkhofer K., Tsiafouli M.A., Bjornlund L., Jorgensen H.B., Brady M.V., Christensen S., de Ruiter P.C., d’Hertefeldt T., Frouz J., Hedlund K., Hemerik L., Hol W.H.G., Hotes S., Mortimer S.R., Setälä H., Sgardelis S.P., Uteseny K., van der Putten W., Wolters V. & Bardgett R.D. 2013. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 110 (35) 14296–14301. DOI: 10.1073/pnas.1305198110CrossrefGoogle Scholar

  • Dick R.P., Breakwell D.P. & Turco R. F. 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators, Chapter 15, pp. 247–271. DOI: 10.2136/sssaspecpub49. c15Doran J.W. & Jones A.J. (eds), Methods for Assessing Soil Quality, Soil Science Society of America, Spec. Publ. 49, Madison, Wisconsin, 410 pp. ISBN: 0-89118-826-6CrossrefGoogle Scholar

  • Edwards C.A. (ed.) 2004. Earthworm Ecology. CRC Press, Boca Raton, Fl, /456 pp. ISBN: 9780849318191Google Scholar

  • Edwards C.A. & Bohlen P.J. 1996. The Biology and Ecology of Earthworms. Publ. Chapman and Hall, London, 426 pp. ISBN: 0412561603, 9780412561603Google Scholar

  • Gormsen D., Hedlund K., Korthals G.W., Mortimer S.R., Pižl V., Smilauerova M. & Sugg E. 2004. Management of plant communities on set-aside land and its effects on earthworm communities. Eur. J. Soil Biol. 40 (3-4) 123–128. DOI: 10.1016/j.ejsobi.2004.08.001CrossrefGoogle Scholar

  • Ivask M., Kuu A., Meriste M., Truu J., Truu M. & Vaater V. 2008. Invertebrate communities (Annelida and epigeic fauna) in three types of Estonian cultivated soils. Eur. J. Soil Biol. 44 (5-6) 532–540. DOI: 10.1016/j.ejsobi.2008.09.005Web of ScienceCrossrefGoogle Scholar

  • Kasprzak K. 1986. Sk˛aposzczety glebowe III, Rodzina: Dżdżownice (Lumbricidae). Series: Klucze do oznaczania bezkręgowców Polski, tom 6. PAN, Warszawa, 187 pp. ISBN: 8301061677, 9788301061678Google Scholar

  • Kasprzak K. 1989. Zoogeography and habitat distribution of earthworms (Lumbricidae) and enchytraeids (Enchytraeidae) of the Carpathian Mountains (Poland). Misc. Zool. 13: 37– 44.Google Scholar

  • Kladivko E.J. 2001. Tillage system and soil ecology. Soil Till. Res. 61: 61–76.Google Scholar

  • Klute A. & Dirksen C. 1986. Water retention. Laboratory methods, Chapter 26, pp. 635–662. DOI: 10.2136/sssabookser5.1.2ed. c26Klute A. (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed., series Agronomy, Number 9 (Part 1), SSSA Book Series 5, American Society of Agronomy, Madison, Wisconsin, USA, 1188 pp. ISBN-13: 978-0-89118-811-7, ISBN-10: 0-89118-811-8CrossrefGoogle Scholar

  • Kostecka J. & Skoczeń S. 1993. Earthworm (Oligochaeta: Lumbricidae) populations in four types of beech wood Fagetum carpaticum in the Bieszczady National Park (south-eastern Poland). Part I. Species composition, diversity, dominance, frequency and associations. Acta Zool. Cracov. 36 (1) 1–13. ISBN: 83-900337-8-XGoogle Scholar

  • Lee K.E. 1985. Earthworms their Ecology and Relationships With Soils and Land Use. Academic Press, Sydney, 411 pp. ISBN: 0124408605, 9780124408609Google Scholar

  • Monroy F., Aira M., Dominguez J. & Velando A., 2006. Seasonal population dynamics of Eisenia fetida (Savigny, 1826) (Oligochaeta, Lumbricidae) in the field. Compt. Rend. Biol. 329 (11) 912–915. DOI: 10.1016/j.crvi.2006.08.001CrossrefGoogle Scholar

  • Ouellet G., Lapen D.R., Topp E., Sawada M. & Edwards M. 2008. A heuristic model to predict earthworm biomass in agroecosystems based on selected management and soil properties. Appl. Soil Ecol. 39 (1) 35–45. DOI: 10.1016/j.apsoil.2007.11. 003Web of ScienceCrossrefGoogle Scholar

  • Paoletti M.G. 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agr. Ecosyst. Environ. 74 (1-3) 137–155. DOI: 10.1016/S0167-8809(99)00034-1CrossrefGoogle Scholar

  • Pelosi C., Pey B., Hedde M., Caro G., Capowiez Y., Guernion M., Peigné J., Piron D., Bertrand M. & Cluzeau D. 2014. Reducing tillage in cultivated fields increases earthworm functional diversity. Appl. Soil Ecol. 83: 79–87. DOI: 10.1016/j.apsoil.2013.10.005CrossrefWeb of ScienceGoogle Scholar

  • Pižl V. 2002. Žížaly České republiky [Earthworms of the Czech Republic]. Monografické č. seriálu: Sborník přírodovědného klubu v Uherském Hradišti. Supplementum 9: 154 pp. ISBN: 80-86485-04-8Google Scholar

  • Pižl V. & Stary J. 2001. The effects of mountains meadow management on soil fauna communities (on example of earthworms and oribatid mites). Silva Gabreta 7 87–96.Google Scholar

  • Plisko D.J. 1973. Lumbricidae — Dżdżownice (Annelida: Oligochaeta) Fauna Polski – Fauna Poloniae 1, PWN, Warszawa, 156 pp.Google Scholar

  • Postma-Blaauw M.B., de Goede R.G.M., Bloem J., Faber J.H. & Brussaard L. 2012. Agricultural intensification and deintensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Appl. Soil Ecol. 57: 39–49. DOI: 10.1016/j.apsoil. 2012.02.011CrossrefGoogle Scholar

  • Pulleman M., Creamer R., Hamer U., Helder J., Pelosi C., Pérés G. & Rutgers M. 2012. Soil biodiversity, biological indicators and soil ecosystem services-an overview of European approaches. Curr. Opin. Environ. Sustain. 4 (5): 529–538. DOI: 10.1016/j.cosust.2012.10.009CrossrefWeb of ScienceGoogle Scholar

  • Römbke J., Jänsch S. & Didden W. 2005. The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Safe. 62 (2) 249–265. DOI: 10.1016/j.ecoenv.2005.03.027CrossrefGoogle Scholar

  • Rożen A. 1982. The annual cycle in populations of earthworms (Lumbricidae, Oligochaeta) in three types of oak-hornbeam of the Niepolomicka Forest. I. Species composition, dominance, frequency and associations. Pedobiologia 23: 199–208.Google Scholar

  • European Union’s European Agricultural Fund 2015. The Rural Development Programme (RDP), 2014–2020. [Program Rozwoju Obszarów Wiejskich na lata 2014 – 2020 (PROW 2014-2020)] http://www.minrol.gov.pl/ (accessed 26.01.2015).

  • Schmidt O. 2001. Time limited hand sorting for long-term monitoring of Earthworm populations. Pedobiologia 45 (1) 69– 83. DOI: 10.1078/0031-4056-00069CrossrefGoogle Scholar

  • Skiba S. 2008. Some problems of the soil classification of the Carpathian mountain soils. Gruntoznavstvo / Soil Science 9 (3-4): 165–168.Google Scholar

  • van Eekeren N., Bommele L., Bloem J., Schouten T., Rutgers M., de Goede R., Reheul D. & Brussaard L. 2008. Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl. Soil Ecol. 40 (3) 432–446. DOI: 10.1016/j.apsoil.2008.06.010CrossrefGoogle Scholar

  • WRB 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015World Soil Resources Reports 106, FAO, 2014, 192 pp. ISBN: 978-92-5-108369-7Google Scholar

About the article

Received: 2015-07-28

Accepted: 2016-02-03

Published Online: 2016-04-20

Published in Print: 2016-03-01

Citation Information: Biologia, Volume 71, Issue 3, Pages 316–322, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0035.

Export Citation

© 2016 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Agnieszka Józefowska, Tomasz Zaleski, Jan Zarzycki, and Krzysztof Frączek
Journal of Mountain Science, 2018, Volume 15, Number 11, Page 2409

Comments (0)

Please log in or register to comment.
Log in