Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 71, Issue 3

Issues

Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper

Ayman Salih Omer Idris
  • Centre for Biofuels, Biotechnology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram – 695019, India
  • Academy of Scientific and Innovative Research, New Delhi – 110025, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ashok Pandey
  • Centre for Biofuels, Biotechnology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram – 695019, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rajeev Kumar Sukumaran
  • Corresponding author
  • Centre for Biofuels, Biotechnology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram – 695019, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-20 | DOI: https://doi.org/10.1515/biolog-2016-0046

Abstract

Media components were optimized using two-step statistical design of experiments for enhancing endoglucanase/ carboxymethyl cellulase (CMCase) production by Trichoderma reesei RUT C30. A Placket-Burman design identified cellulose concentration and pH as the most significant variables, which influenced the CMCase activity. Central composite design was employed to optimize these selected parameters. The optimal activity was obtained at cellulose concentration 19.7 g/L and pH of 7.2. Under the optimized conditions, CMCase activity was 83.63 ± 1.86 IU/mL and filter paper activity was 2.58 ± 0.2 filter paper units per mL. Enzyme productivity was higher compared to previous reports. The enzyme produced from T. reesei was concentrated and was evaluated for deinking of printed paper, which demonstrated the suitability of the enzyme for this application.

Keywords: cellulase; Trichoderma; endoglucanase; deinking; paper and pulp; response surface

References

  • Bajpai P. 2014. Recycling and Deinking of Recovered Paper. Elsevier, Amsterdam.Google Scholar

  • Cherry J.R. & Fidantsef A.L. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438–443.Google Scholar

  • de Castro A.M., Ferreira M.C., da Cruz J.C., Rodrigues P.K., Carvalho D.F., Leite S. & Pereira J.N. 2010. High-yield endoglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res. 2010: 854526.Google Scholar

  • del Castillo E. 2007. Process Optimization: A Statistical Approach. Springer Science, New York.Google Scholar

  • Durand H., Baron M., Calmels T. & Tiraby G. 1998. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains, pp. 135–151. In: Aubert J.P., Beguin P. & Millet J. (eds) Biochemistry and Genetics of Cellulose Degradation, FEMS Symposium No. 43. Academic Press, London.Google Scholar

  • El-Gogary S., Leite A., Crivellaro O., El-Dorry H. & Eveleigh D.E. 1990. Trichoderma reesei cellulose – from mutants to induction, pp. 200–211. In: Kubicek C.P., Eveleigh D.E., Esterbauer H., Steiner W., Kubicek-Pranz E.M (eds) Trichoderma reesei Cellulases. Royal Society of Chemistry, Cambridge.Google Scholar

  • Ghose T.K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257–268.Google Scholar

  • Gubitz G.M., Mansfield S.D. & Saddler J.N. 1998. Effectiveness of two endoglucanases from Gloeophyllum species in deinking mixed office waste paper, pp. C135–C138. In: Proceedings of The 47th International Conference on Biotechnology of the Pulp and Paper Industry, Montreal.Google Scholar

  • Ibarra D., Concepción Monte M., Blanco A., Martínez A.T. & Martínez M.J. 2012. Enzymatic deinking of secondary fibers: cellulases/hemicellulases versus laccase-mediator system. J. Ind. Microbiol. Biotechnol. 39: 1–9.Google Scholar

  • Ilmen M., Saloheimo A., Onnela M.L. & Penttilä M.E. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63: 1298–306.Google Scholar

  • Jeffries T.W., Klungness J.H., Marguerite S. & Cropsey K.R. 1994. Comparison of enzyme enhanced with conventional deinking of xerographic and laser-printed paper. Tappi J. 77: 173–179.Google Scholar

  • Juhasz T., Szengyel Z., Reczey K. & Viikari L. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40: 3519–3525.Google Scholar

  • Jun H., Bing Y., Keying Z., Xuemei D. & Daiwen C. 2009. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian J. Microbiol. 49: 188–195.Google Scholar

  • Krishna S.H., Rao K.C., Babu J.S. & Reddy D.S. 2000. Studies on the production and application of cellulase from Trichoderma reesei QM- 9414. Bioprocess Biosyst. Eng. 22: 467–470.Google Scholar

  • Kubicek C.P., Mikus M., Schuster A., Schmoll M. & Seiboth B. 2009. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels 2: 19.Google Scholar

  • Mandels M. & Weber J. 1969. The production of cellulases. Adv. Chem. 95: 391–413.Google Scholar

  • Mandels M., Weber J. & Parizek R. 1971. Enhanced cellulase production by a mutant of Trichoderma viride. Appl. Microbiol. 21: 152–154.Google Scholar

  • Montenecourt B.S. & Eveleigh D.E. 1979. Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Adv. Chem. 181: 289–301.Google Scholar

  • Okada H., Tada K., Sekiya T., Yokoyama K., Takahashi A., Tohda H., Kumagai H. & Morikawa Y. 1998. Molecular characterization and heterologous expression of the gene encoding a low-molecular mass endoglucanase from Trichoderma reesei QM9414. Appl. Environ. Microbiol. 64: 555–563.Google Scholar

  • Plackett R.L. & Burman J.P. 1946. The design of optimum multifactorial experiments. Biometrika 37: 305–325.Google Scholar

  • Prabavathy V.R., Mathivanan N., Sagadevan E., Murugesan K. & Lalithakumari D. 2006. Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzyme Microb. Technol. 38: 719–723.Google Scholar

  • Reese E.T. & Mandels M. 1984. Rolling with the times: production and applications of Trichoderma reesei cellulases. Annu. Rep. Ferm. Proc. 7: 1–20.Google Scholar

  • Ryu D.D.Y. & Mandels M. 1980. Cellulases: biosynthesis and applications. Enzyme Microb. Technol. 2: 91–102.Google Scholar

  • Saloheimo M., Lehtovaara P., Penttila M., Teeri T.T., Stahlberg J., Johansson G., Pettersson G., Claeyssens M., Tomme P. & Knowles J.K. 1988. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63: 11–22.Google Scholar

  • Saloheimo M., Nakari-Setala T., Tenkanen M. & Penttila M. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249: 584–591.Google Scholar

  • Sternberg D. 1976. Production of cellulase by Trichoderma. Biotechnology and Bioengineering Symp. 6: 35–53.Google Scholar

  • Virk A.P., Puri M., Gupta V., Capalash N. & Sharma P. 2013. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS One 8: e72346.Google Scholar

  • Vyas S. & Lachke A. 2003. Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enzyme Microb. Technol. 33: 236–245.Google Scholar

  • Wen Z., Liao W., & Chen S. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96: 491–499.Google Scholar

  • Zaldivar M., Velásquez J. C., Contreras I. & María Pérez L. 2001. Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electronic J. Biotechnol. 4: a07.Google Scholar

About the article

Accepted: 2016-03-19

Received: 2015-12-31

Published Online: 2016-04-20

Published in Print: 2016-03-01


Citation Information: Biologia, Volume 71, Issue 3, Pages 265–271, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0046.

Export Citation

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in