Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 71, Issue 5

Issues

Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora

Neelu Nawani
  • Corresponding author
  • Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune - 411033, India; e-mail:
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aminur Rahman
  • System Biology Research Centre, School of Biosciences, University of Skovde, SE-54128 Skovde, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Noor Nahar
  • System Biology Research Centre, School of Biosciences, University of Skovde, SE-54128 Skovde, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anandakumar Saha / Balasaheb Kapadnis / Abul Mandal
  • System Biology Research Centre, School of Biosciences, University of Skovde, SE-54128 Skovde, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-16 | DOI: https://doi.org/10.1515/biolog-2016-0074

Abstract

This study illustrates the sporadic distribution of metals in fluvial systems flowing from catchments to urban settlements. This is a detailed study prognosticating the deteriorating quality of rivers at specific locations due to metal pollution. Heavy metals like cadmium, lead, nickel and mercury are prominent in industrial sector. Contour plots derived using spatial and temporal data could determine the focal point of metal pollution and its gradation. Metal values recorded were cadmium 157 mg/L, lead 47 mg/L, nickel 61 mg/L and mercury 0.56 mg/L. Prokaryote diversity was less in polluted water and it harboured metal tolerant bacteria, which were isolated from these polluted sites. Actinomycetes like Streptomyces and several other bacteria like Stenotrophomonas and Pseudomonas isolated from the polluted river sites exhibited changes in morphology in presence of heavy metals. This stress response offered remedial measures as Streptomyces were effective in biosorption of cadmium, nickel and lead and Stenotrophomonas and Pseudomonas were effective in the bioaccumulation of lead and cadmium. Eighty-nine mg of lead and 106 mg of nickel could be adsorbed on one gram of Streptomyces biomass-based biosorbent. Such biological remedies can be further explored to remove metals from polluted sites and from metal contaminated industrial or waste waters.

Key words: diversity; metal pollution; bioremediation; morphological changes; bacteria; actinomycetes; Pune rivers; prokaryote

References

  • Abdo Z., Schiiette U.M.E., Bent S.J., Williams C.J., Forney L.J. & Joyce P. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8: 929-938.PubMedCrossrefGoogle Scholar

  • ATSDR. 2008. Draft toxicological profile for cadmium, Atlanta: US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. http://www.atsdr. cdc.gov/toxprofiles/tp5-p.pdf (accessed 29.11.2015).

  • Barkay T. & Pritchard H. 1988. Adaptation of aquatic microbial communities to pollutant stress. Microbiol. Sci. 5: 165—169.PubMedGoogle Scholar

  • Cao H., Hong Y., Li M. & Gu J. 2012. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl. Microbiol. Biotechnol. 94: 247-259.CrossrefWeb of SciencePubMedGoogle Scholar

  • Dang H., Li J., Chen R., Wang L., Guo L., Zhang Z. & Klotz M. G. 2010. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl. Environ. Microbiol. 76: 4691— 4702.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Dávila Costa J.S., Albarracín V.H. & Abate C.M. 2011. Responses of environmental Amycolatopsis strains to copper stress. Ecotoxicol. Environ. Safe. 74: 2020-2028.CrossrefGoogle Scholar

  • Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z., Knowler D.J., Levfgque C. & Eisler R. 2004. Mercury hazards from gold mining to humans, plants, and animals. Rev. Environ. Contam. Toxicol. 181: 139-198.PubMedGoogle Scholar

  • Eaton A.D., Clesceri L.S., Greenberg A.E. & Franson M.A.H. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association., USA, 1100 pp.Google Scholar

  • Golab Z., Orlowska B., Glubiak M. & Olejnik K. 1990. Uranium and lead accumulation in cells of Streptomyces sp. Acta Microbiol. Pol. 39: 177-188.PubMedGoogle Scholar

  • GSR 801 (E). 1993. General Standards for Discharge of Environmental Pollutants. EPA. http://ercmp.nic.in/Documents/ GenEnvStandard.pdf (accessed 21.09.2015).

  • IS 13428:2005. 2005. Bureau of Indian Standards. Packaged natural mineral water specification. https://law.resource.org/ pub/in/bis/S06/is. 13428.2005.pdf (accessed 29.04.2016).

  • Iskandar N.L., Zainudin N.A.I.M. & Tan S.G. 2011. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J. Environ. Sci. 23: 824-830.CrossrefWeb of ScienceGoogle Scholar

  • Kent A.D., Smith D.J., Benson B.J. & Triplett E.W. 2003. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl. Environ. Microbiol. 69: 6768—6776.PubMedCrossrefGoogle Scholar

  • Kruskal J.B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1-27.CrossrefGoogle Scholar

  • Kruskal J.B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 28—42.Google Scholar

  • Lane D.J. 1991. 16S/23S rRNA sequencing, pp 115-175. In: Stackebrandt E. & Goodfellow M.M. (eds), Nucleic Acid Techniques in Bacterial Systematic, John Wiley & Sons, United Kingdom.Google Scholar

  • Levinson H.S. & Mahler I. 1998. Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus. FEMS Microbiol. Lett. 161: 135-138.Google Scholar

  • Muhammad A., Wang H.Z., Wu J.J., Xu J.M. & Xu D.F. 2005. Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution. J. Environ. Sci. (China) 17: 802-807.PubMedGoogle Scholar

  • Nakayama F.S. 1969. Theoretical consideration of the calcium sulfate-bicarbonate-carbonate interrelation in soil solution. Soil Sci. Soc. Am. J. 33: 668-672.CrossrefGoogle Scholar

  • Nawani N., Desale P., Rahman A., Nahar N., Kapadnis B. & Mandal A. 2016. A method for removal of metals from aqueous solutions. Indian Patent 17/MUM/2015 A. Patent Office Journal, India. 5: 4908.Google Scholar

  • PCMC. 2013. Environmental Status Report 2012-13. https:// www.pcmcindia.gov.in/pdf/esreng2013.pdf (accessed 29.04. 2016).

  • Sheik C.S., Mitchell T.W., Rizvi F.Z., Rehman Y., Faisal M., Hasnain S., Mclnerney M.J. & Krumholz L.R. 2012. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7: e40059.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Sunderay S.K., Panda U.C., Nayak B.B. & Bhatta D. 2006. Mul-tivariate statistical techniques for the evaluation of spatial and temporal variation in water quality of Mahanadi river-estuarine system (India) — a case study. Environ. Geochem. Health 28: 317-330.CrossrefGoogle Scholar

  • Vorosmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S.E., Sullivan C.A., Reidy Liermann C. & Davies P.M. 2010. Global threats to human water security and river biodiversity. Nature 467: 555— 561.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Yebra D.M., Kill S. & Dam-Johansen K. 2004. Anti-fouling technology: past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progr. Org. Coat. 50: 75-104.CrossrefGoogle Scholar

About the article

Received: 2015-12-24

Accepted: 2016-05-09

Published Online: 2016-06-16

Published in Print: 2016-05-01


Citation Information: Biologia, Volume 71, Issue 5, Pages 494–507, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0074.

Export Citation

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences Status of metal pollution in rivers at Pune.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Priti Prabhakar Yewale, Kiran Bharat Lokhande, Aishwarya Sridhar, Monika Vaishnav, Faisal Ahmad Khan, Abul Mandal, Kakumani Venkateswara Swamy, Jana Jass, and Neelu Nawani
Environmental Science and Pollution Research, 2019

Comments (0)

Please log in or register to comment.
Log in