Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 71, Issue 6

Issues

The fractal nature of the latitudinal biodiversity gradient

Roberto Cazzolla Gatti
Published Online: 2016-07-14 | DOI: https://doi.org/10.1515/biolog-2016-0077

Abstract

For a long time ecologists have questioned on the variations of biodiversity across the latitudinal gradient. Recently, it has emerged that the changes in β-diversity are caused simply by changes in the sizes of species pools. In this study, the species pool size and the fractal nature of ecosystems was combined to clarify some general patterns of this gradient. Considering temperature, humidity and NPP as the main variables of an ecosystem niche and as the axis of the polygon in the Cartesian plane, it is possible to build fractal hypervolumes, whose fractal dimension rises up to three moving towards the equator. It follows that the best figure that graphically synthesizes the evolutionary forces that fit this ecosystem hypervolume is the fractal cauliflower.

Keywords: latitudinal gradient; biodiversity; fractals; ecosystem niche; cauliflower

References

  • Blackburn T.M. & Gaston K.J. 1996. A sideways look at patterns in species richness, or why there are so few species outside the tropics. Biodivers. Lett. 3 (2): 44–53. DOI: 10.2307/2999768CrossrefGoogle Scholar

  • Brown J.H., Gupta V.K., Li B.L., Milne B.T., Restrepo C. & West G.B. 2002. The fractal nature of nature: power laws, ecological complexity and biodiversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357: 619–626. DOI: 10.1098/rstb.2001.0993CrossrefGoogle Scholar

  • Cazzolla Gatti R. 2011. Evolution is a Cooperative Process: The Biodiversity-related Niches Differentiation Theory (BNDT) Can Explain Why. Theoretical Biology Forum 104 (1): 35–44. PMID: 22220353Google Scholar

  • Cazzolla Gatti R. 2016. A conceptual model of new hypothesis on the evolution of biodiversity. Biologia 71 (3): 343–351. DOI: 10.1515/biolog-2016-0032Web of ScienceCrossrefGoogle Scholar

  • Currie D.J., Mittelbach G.G., Cornell H.V., Field R., Guégan J.F., Hawkins B.A., Kaufman D.M., Kerr J.T., Oberdorff T., O’Brien E. & Turner J.R.G. 2004. Predictions and tests of climate-based hypotheses of broad scale variation in taxonomic richness. Ecol. Lett. 7 (12): 1121–1134. DOI: 10.1111/j.1461-0248.2004.00671.xCrossrefGoogle Scholar

  • Falconer K. 1990. Fractal Geometry: Mathematical Foundations and Applications. New Jersey: John Wiley & Sons, Ltd, 337 pp. ISBN: 0471922870, 9780470848616 DOI: 10.1002/04700 13850Google Scholar

  • Julia G.M. 1918. Mémoire sur l’iteration des fonctions rationnelles, Journal de Mathématiques Pures et Appliquées 1 (1918): 47–246.Google Scholar

  • Janzen D.H. & Pond C.M. 1975. A comparison, by sweep sampling, of the arthropod fauna of secondary vegetation in Michigan, England and Costa Rica. Trans. R. Entomol. Soc. London 127 (1): 33–50. DOI: 10.1111/j.1365-2311.1975.tb00551.xCrossrefGoogle Scholar

  • Kay R.F., Madden R.H., Van Schaik C. & Higdon D. 1997. Primate species richness is determined by plant productivity: implications for conservation. Proc. Nat. Acad. Sci. USA 94 (24): 13023–13027. DOI: 10.1073/pnas.94.24.13023CrossrefGoogle Scholar

  • Mandelbrot B.B. 1977. Fractals: Form, Chance and Dimension. 1st ed. W.H. Freeman and Company, 365 pp. ISBN-10: 0716704730Google Scholar

  • McArthur R.H. 1972. Geographical Ecology. Princeton. Princeton University Press, 269 pp. ISBN: 0691023824, 9780691023823Google Scholar

  • Nathan Kraft J.B., Comita L.S., Chase J.M., Sanders N.J., Swenson N.G., Crist T.O., Stegen J.C., Vellend M., Boyle B., Anderson M.J., Cornell H.V., Davies K.F., Freestone A.L., Inouye B.D., Harrison S.P. & Myers J.A. 2011. Disentangling the drivers of β-diversity along latitudinal and elevational gradients. Science 333 (6050): 1755–1758. DOI: 10.1126/science. 1208584CrossrefWeb of ScienceGoogle Scholar

  • Pianka E.R. 1966. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100 (910): 33–46. DOI: 10.1086/282398CrossrefGoogle Scholar

  • Sang-Hoon K. 2005. Fractal structure of a white cauliflower. J. Korean Phys. Soc. 46 (2): 474–477. DOI: 10.3938/jkps.46.474CrossrefGoogle Scholar

  • Tsang K.Y. 1986. Dimensionality of strange attractors determined analytically. Phys. Rev. Lett. 57 (12): 1390–1393. DOI: 10.1103/PhysRevLett.57.1390CrossrefGoogle Scholar

  • Vernadsky V.I. 1926. The Biosphere. New York: Springer Science & Business Media, 192 pp. ISBN: 0-387-98268-xGoogle Scholar

  • Wiens J.J. & Graham C.H. 2005. Niche conservatism: integrating evolution, ecology and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36: 519–539. DOI: 10.1146/annurev.ecolsys.36.102803.095431Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-02-09

Accepted: 2016-04-21

Published Online: 2016-07-14

Published in Print: 2016-06-01


Citation Information: Biologia, Volume 71, Issue 6, Pages 669–672, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0077.

Export Citation

©2016 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Francesco Tiralongo, Giuseppina Messina, Roberto Cazzolla Gatti, Daniele Tibullo, and Bianca Maria Lombardo
Journal of Sea Research, 2018, Volume 142, Page 174
[2]
Roberto Cazzolla Gatti, Anastasia Dudko, Artem Lim, Alena I. Velichevskaya, Inna V. Lushchaeva, Alice V. Pivovarova, Stefano Ventura, Erica Lumini, Andrea Berruti, and Igor V. Volkov
Ecology and Evolution, 2018
[3]
Roberto Cazzolla Gatti, Brian Fath, Wim Hordijk, Stuart Kauffman, and Robert Ulanowicz
Journal of Theoretical Biology, 2018
[4]
R. Cazzolla Gatti, G. Messina, M. Ruggieri, V. Dalla Nora, and B. M. Lombardo
The European Zoological Journal, 2018, Volume 85, Number 1, Page 210
[7]
Roberto Cazzolla Gatti, Arianna Di Paola, Antonio Bombelli, Sergio Noce, and Riccardo Valentini
Plant Ecology, 2017, Volume 218, Number 7, Page 899
[8]
R Cazzolla Gatti, G Vaglio Laurin, and R Valentini
iForest - Biogeosciences and Forestry, 2017, Volume 10, Number 2, Page 362
[9]
Roberto Cazzolla Gatti, Wim Hordijk, and Stuart Kauffman
Ecological Modelling, 2017, Volume 346, Page 70

Comments (0)

Please log in or register to comment.
Log in