Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 71, Issue 8


Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance

Khawaja Shafique Ahmad / Mansoor Hameed / Jiabin Deng / Muhamad Ashraf / Abdul Hamid / Farooq Ahmad / Sana Fatima / Noreen Akhtar
Published Online: 2016-09-14 | DOI: https://doi.org/10.1515/biolog-2016-0113


Three ecotypes [foot hill (700 m), mid hill (1571 m) and top hill (2804 m)] of a Bermuda grass Cynodon dactylon (L.) Pers. from Pir Chinasi Hill in Western Himalaya were evaluated for their degree of tolerance to altitudinal stress. Differential response of all ecotypes in terms of adequate structural modifications to different elevation levels was an evident to confirm the hypothesis that plants inhabiting different altitudes show variation in structure (internal modifications) and strategic (response) due to heterogeneity in environmental gradients. Soil at top hill site was more acidic and displayed significant increase in ionic content and total nitrogen. High elevation had severe impact on morphoanatomical and physiological attributes. A significant decline in shoot fresh weight and total leaf area was observed in top hill ecotype. With exception of Ca2+ and carotenoid, other ionic and chlorophyll content were significantly declined at high elevations. Anatomical alterations such as, increased leaf thickness, intensive sclerification around the vascular bundle and pith area, reduced metaxylem vessel area, high number of silica bodies, high pubescence (increased microhair and trichome density) were some of the promising anatomical adaptations in top hill ecotype which played an important role in high degree of tolerance of this grass to cope with altitudinal stresses. Increased leaf thickness might be a response to lower temperature that protects mesophyll cells and high density of trichomes may be involved in blocking transpiration water and internal heat. The pattern of constant variation suggests that differential response of these ecotypes is highly related to air temperature, pattern of rainfall, availability of nutrients.

Key words: Bermuda grass; elevation; ecological adaptations; structural modifications; PCA; Himalaya


  • Alvarez J.M., Rocha J.F. & Machado S.R. 2008. Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function Braz. Arch. Bio. Technol. 51: 113–119.Google Scholar

  • Arnon D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol. 24: 1–15.Google Scholar

  • Atkin O.K. & Day D.D. 1990. A comparison of the respiratory processes and growth rates of selected Australian alpine and related lowland species. Aus. J. Plant Physiol. 17: 517–526Google Scholar

  • Baath E. & Anderson T.H. 2003 Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35: 955–963.Google Scholar

  • Beniston M. 2003. Climatic change in mountain regions: a review of possible impacts. Climatic Change 59: 5–31.Google Scholar

  • Cole V.C., Paustian K., Elliott E.T., Metherell A.K., Ojima D.S. & Parton W.J. 1993. Analysis of agroecosystem carbon pools. Water Air Soil Poll. 70: 357–371.Google Scholar

  • Fatemeh Z., Tajik S. & Soleimanpour S. 2011. Effects of altitude on anatomy and concentration of Crocin, Picrocrocin and Safranal in Crocus sativus L. Aus. J. Crop Sci. 5: 831–838.Google Scholar

  • Flann C., Ladiges P.Y. & Walsh N.G. 2002. Morphological variation in Leptorhynchos squamatus (Gnaphalieae: Asteraceae). Aus. Syst. Bot. 15: 205–219.Google Scholar

  • Grabherr G., Gottfried M. & Pauli H. 1994. Climate effects on mountain plants. Nature 369: 448–448.Google Scholar

  • Graefe S., Leuschner C., Coners H. & Hertel D. 2011. Root functioning in tropical high-elevation forests: Environmental vs. biological control of root water absorption. Environ. Exp. Bot. 71: 329–336.Google Scholar

  • Griffiths R.P., Madritch M.D. & Swanson A.K. 2009. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For. Ecol. Manage. 257: 1–7.Google Scholar

  • Gupta S.M., Grover A. & Ahmed Z. 2012, Identification of Abiotic Stress Responsive Genes from Indian High Altitude Lepidium latifolium L. Defence Sci. J. 62: 315–318.Google Scholar

  • Hameed M., Ashraf M. & Naz N. 2009. Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322: 229–238.Google Scholar

  • Hameed M., Ashraf M., Naz N. & Al-Qurainy F. 2010. Anatomical adaptations of Cyanodon dactylon (L.) Pers. from the Salt range Pakistan, to salinity stress. I. Root and Stem anatomy. Pak. J. Bot. 42: 279–289.Google Scholar

  • Hameed M., Nawaz T., Ashraf M., Naz N., Batool R., Ahmad M.S.A. & Riaz A. 2013. Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turk. J. Bot. 37: 715–724.Google Scholar

  • Hameed M., Nawaz T., Ashraf M., Tufail A., Kanwal H., Ahmad M.S.A. & Ahmad I. 2012. Leaf anatomical adaptations of some halophytic and xerophytic sedges of the Punjab. Pak. J. Bot. 44: 159–164.Google Scholar

  • Horie T., Karahara I. & Katsuhara M. 2012. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5: 1–18.Google Scholar

  • Hovenden M.J & Vander Schoor J.K. 2004. Nature versus nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol. 161: 585–594.Google Scholar

  • Hovenden M.J. & Vander Schoor J.K. 2006. The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii. New Phytol. 169: 291–297.Google Scholar

  • Jiang F., Wang F., Wu Z., Li Y., Shi G., Hu J. & Hou X. 2011. Components of the Arabidopsis CBF cold-response pathway are conserved in non-heading chinese cabbage. Plant Mol. Biol. Rep. 29: 525–532.Google Scholar

  • Jump A.S. & Penuelas J. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Letters 8: 1010–1020.Google Scholar

  • Kofidis G., Bosabalidis A.M. & Moustakas M. 2003. Contemporary seasonal and altitudinal variations of leaf structural features in oregano (Origanum vulgare L.). Ann. Bot. 92: 635–645.Google Scholar

  • Kofidis G., Bosabalidis A.M. & Moustakas M. 2007. Combined effect of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environ. Exp. Bot. 60: 69–76.Google Scholar

  • Körner C. 1999. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin: Springer.Google Scholar

  • Körner C., Bannister P. & Mark A.F. 1986. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69: 577–588.Google Scholar

  • Körner C. & Diemer M. 1994. Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO2. Func. Ecol. 8: 58–68.Google Scholar

  • Körner C., Neumayer M., Menendez-Riedl S. & Smeets-Scheel A. 1989. Functional morphology of mountain plants. Flora 182: 353–383.Google Scholar

  • Liu Li., Xu S.M. & Woo K.C. 2005. Solar UV-B radiation on growth, photosynthesis and the xanthophylls cycle in tropical acacias and eucalyptus. Environ. Exp. Bot. 54: 121–130.Google Scholar

  • Malik N.Z., Arshad M. & Mirza S.N. 2007. Phytosociological Attributes of Different Plant Communities of Pir-Chinasi Hills of Azad Jammu and Kashmir. Int. J. Agri. Biol. 9: 569–574.Google Scholar

  • Mark A.F., Dickinson K.J.M. & Hofstede R.G.M. 2000. Alpine vegetation, plant distribution, life forms, and environments in a humid New Zealand region: Oceanic and tropical high mountain affinities. Arct. Antarct. Alp. Res. 32: 240–254.Google Scholar

  • McElwain J.C. 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology 32: 1017–1020.Google Scholar

  • Peng Y.H., Zhu Y.F. & Mao Y.Q. 2004. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. J. Exp. Bot. 55: 939–949.Google Scholar

  • Poorter L. & Rozendaal D.M.A. 2008. Leaf size and leaf display of 38 tropical tree species. Oecologia 158: 35–46.Google Scholar

  • Roderick M.L., Berry S.L. & Noble I.R. 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Func. Ecol. 14: 423–437.Google Scholar

  • Royer D.L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev. Palaeobot. Palynol. 114: 1–28.Google Scholar

  • Rundgren M. 1999. A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. Holocene 9: 509–513.Google Scholar

  • Sandve S.R., Kosmala A., Rudi H., Fjellheim S., Rapacz M., Yamada T. & Rognli O.A. 2011. Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci. 180: 69–77.Google Scholar

  • Schneider J.V., Zipp D., Gaviria J. & Zizka G. 2003 Successional and mature stands in an upper Andean rain forest transect of Venezuela: do leaf characteristics of woody species differ? J. Trop. Ecol. 19: 251–259.Google Scholar

  • Schreiber L., Hartmann K. & Skrabs M. 1999. Apoplastic barriers in roots: Chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot. 50: 1267–1280.Google Scholar

  • Schroth G., Lehmann J. and Barrios E. 2003. Soil nutrient availability and acidity. In: Schroth G. & Sinclair F.L. (eds), Trees, Crops and Soil Fertility, CAB International, Wallingford, 2: 104–106.Google Scholar

  • Taguchi Y. & Wada N. 2001. Variations of leaf traits of an alpine shrub Sieversia pentapetala along an altitudinal gradient and under a stimulated environmental change. Polar Biosci. 14: 79–87Google Scholar

  • Tanner E.V. & Kapos V. 1982. Leaf structure of Jamaican upper montane rain-forest trees. Biotropica 14: 16–24.Google Scholar

  • Turner I.M. 1994. Sclerophylly: primarily protective? Fun. Ecol. 9: 279–284.Google Scholar

  • Vasellati V., Oesterheld M., Medan D. & Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann. Bot. 88: 355–360.Google Scholar

  • Wolf B. 1982. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 13: 1035–1059.Google Scholar

  • Zhu Z.-J., Zhang Y., Hu Y.-Y. & Yan S.-G. 2000. Studies on microscopic structure of Puccinellia tenuiflora stem under salinity stress. Grassland China 5: 6–9.Google Scholar

About the article

Received: 2016-02-26

Accepted: 2016-07-28

Published Online: 2016-09-14

Published in Print: 2016-08-01

Citation Information: Biologia, Volume 71, Issue 8, Pages 885–895, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2016-0113.

Export Citation

©2016 Institute of Botany, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Khawaja Shafique Ahmad, Ambreen Wazarat, Ansar Mehmood, Muhammad Sajid Aqeel Ahmad, Majid Mahmood Tahir, Fahim Nawaz, Haroon Ahmed, Mohsin Zafar, and Aneela Ulfat
Biologia, 2019
Khawaja Shafique Ahmad, Mansoor Hameed, Abdul Hamid, Fahim Nawaz, Bushra Hafeez Kiani, Muhammad Sajid Aqeel Ahmad, Jiabin Deng, Farooq Ahmad, Imtiaz Hussain, and Sana Fatima
Acta Physiologiae Plantarum, 2018, Volume 40, Number 3
Noreen Akhtar, Mansoor Hameed, Abdul Hamid, Fahim Nawaz, Khawaja Shafique Ahmad, Jiabin Deng, Ansar Mehmood, Claudia Segovia-Salcedo, Muhammad Muslim Shahnaz, and Abdul Qadir Khan
Limnology, 2017

Comments (0)

Please log in or register to comment.
Log in