Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 1

Issues

Effects of food and thermal regimes on body condition indices and skin colouration in corn snakes

Radovan Václav / Zuzana Kolníková
  • Department of Zoology, Comenius University, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-18 | DOI: https://doi.org/10.1515/biolog-2017-0008

Abstract

One of the open problems in evolutionary ecology is signal reliability. While the view that signals need to be costly to be honest has attracted most attention, this type of signals may apply only to some contexts. Also, different views exist about the nature of costs involved in signal honesty, and the classification and examination of these costs remains controversial. Pigmentarybased colouration of animal integuments has received considerable attention among researchers seeking to explain what maintains the honesty of visual signals, but support for existing hypotheses is far from conclusive. Here we use a whole-animal approach and consider a distinct time scale, the period of juvenile growth, to test the effects of different feeding and thermal regimes on different physical parameters and skin colouration in corn snakes Pantherophis guttatus. Postnatal body length growth rate and body mass index (BMI) were sensitive to the thermal, but not to the food regime. The length of intervals between skin shedding was shorter and the short-wavelength reflectance of dorsal skin was higher for snakes receiving food more frequently and having an uninterrupted possibility to thermoregulate. This work suggests that if juvenile corn snakes are environmentally constrained, their preferred life history strategy is to grow at faster rates. The study adds to the growing body of evidence in that BMI may not accurately reflect individual condition in reptiles. Instead, this study demonstrates that the length of shedding intervals and the short-wavelength component of skin colouration may be used in this animal system as proxies of the individual’s condition or quality, possibly reflecting exposure to environmental stress or an ability to cope with it.

Key words: corn snakes; body condition; colouration

References

  • Angilletta, M.J. 2009. Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford University Press, New York, 304 pp. ISBN: 9780198570882Google Scholar

  • Arendt J.D. 1997. Adaptive intrinsic growth rates: an integration across taxa. Quart. Rev. Biol. 72 (2): 149–177. DOI: CrossrefGoogle Scholar

  • Bajer K., Molnár O., Török J. & Herczeg G. 2011. Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biol. Lett. 7 (6): 866–868. DOI: CrossrefGoogle Scholar

  • Bajer K., Molnár O., Török J. & Herczeg G. 2012. Temperature, but not available energy, affects the expression of a sexually selected ultraviolet (UV) colour trait in male European green lizards. PLoS One 7: e34359. DOI: CrossrefGoogle Scholar

  • Bates D., Maechler M., Bolker B. & Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67 (1): 1–48. DOI: CrossrefGoogle Scholar

  • Bechtel H.B. 1978. Color and pattern in snakes (Reptilia, Serpentes). J. Herpetol. 12 (4): 521–532. DOI: CrossrefGoogle Scholar

  • Bechtel H.B. 1995. Reptile and Amphibian Variants: Colors, Patterns, and Scales. Krieger Publishing Company, University of California, 224 pp. ISBN-10: 0894648624Google Scholar

  • Bechtel H.B. & Bechtel E. 1978. Heredity of pattern mutation in the corn snake, Elaphe g. guttata, demonstrated in captive breedings. Copeia 4: 719–721. DOI: CrossrefGoogle Scholar

  • Biernaskie J.M., Grafen A. & Perry J.C. 2014. The evolution of index signals to avoid the cost of dishonesty. Proc. R. Soc. B 281: e20140876. DOI: CrossrefGoogle Scholar

  • Blount J.D. & McGraw K.J. 2008. Signal functions of carotenoid colouration, pp. 213–236. DOI: . In: Britton G., Liaaen-Jensen S. & Pfander H. (eds), Carotenoids, Vol. 4. Natural Functions, Birkhäuser, Basel, 370 pp. ISBN: 978-3-7643-7498-3CrossrefGoogle Scholar

  • Bronikowski A.M. 2000. Experimental evidence for the adaptive evolution of growth rate in the garter snake Thamnophis elegans. Evolution 54 (5): 1760–1767. DOI: CrossrefGoogle Scholar

  • Burkett R.D. 1966. Natural history of the cotton-mouth moccasin, Agkistrodon piscivorus (Reptilia). Univ. Kansas Publ. Mus. Nat. Hist. 17 (9): 435–491.Google Scholar

  • Constantini D. & Møller A.P. 2008. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22 (2): 367–370. DOI: CrossrefGoogle Scholar

  • Cotton S., Fowler K. & Pomiankowski A. 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. B 271: 771–783. DOI: CrossrefGoogle Scholar

  • Cuervo J.J., Belliure J. & Negro J.J. 2016. Coloration reflects skin pterin concentration in a red-tailed lizard. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 193: 17–24. DOI: CrossrefGoogle Scholar

  • Cuthill I.C., Bennett A.T.D., Partridge J.C. & Maier E.J. 1999. Plumage reflectance and the objective assessment of avian sexual dichromatism. Am. Nat. 153 (2): 183–200. DOI: CrossrefGoogle Scholar

  • Duellman W.E. 1978. The Biology of an Equatorial Herpetofauna in Amazonian Ecuador. Miscellaneous publications – University of Kansas, Museum of Natural History – No. 65, 352 pp.Google Scholar

  • Duellman W.E. & Trueb L. 1986. Biology of Amphibians. Johns Hopkins University Press, Baltimore, 620 pp. ISBN: 9780801847806Google Scholar

  • Endler J.A. 1983. Natural and sexual selection on color patterns in poeciliid fishes. Environ. Biol. Fish. 9: 173–190. DOI: CrossrefGoogle Scholar

  • Endler J.A. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41: 315–352. DOI: CrossrefGoogle Scholar

  • Getty T. 2002. Signaling health versus parasites. Am. Nat. 159 (4): 363–371. DOI: .CrossrefGoogle Scholar

  • Grafen A. 1990. Biological signals as handicaps. J. Theor. Biol. 144 (4): 517–546. DOI: CrossrefGoogle Scholar

  • Grether G.F., Hudon J. & Endler J.A. 2001. Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata). Proc. R. Soc. B 268: 1245–1253. DOI: CrossrefGoogle Scholar

  • Guilford T. & Dawkins M.S. 1991. Receiver psychology and the evolution of animal signals. Anim. Behav. 42 (1): 1–14. DOI: CrossrefGoogle Scholar

  • Hartley R.C. & Kennedy M.W. 2004. Are carotenoids a red herring in sexual display? Trends Ecol. Evol. 19 (7): 353–354. DOI: CrossrefGoogle Scholar

  • Higham J.P. 2013. How does honest costly signaling work? Behav. Ecol. 25: 8–11. DOI: CrossrefGoogle Scholar

  • Hothorn T., Bretz F. & Westfall, P. 2008. Simultaneous inference in general parametric models. Biom. J. 50 (3): 346–363. DOI: .CrossrefGoogle Scholar

  • Johnsson J.I. & Bohlin T. 2006. The cost of catching up: increased winter mortality following structural growth compensation in the wild. Proc. R. Soc. B 273: 1281–1286. DOI: CrossrefGoogle Scholar

  • Kikuchi D.W., Seymoure B.M. & Pfennig D.W. 2014. Mimicry’s palette: widespread use of conserved pigments in the aposematic signals of snakes. Evol. Dev. 16 (2): 61–67. DOI: .CrossrefGoogle Scholar

  • Kopena R., López P. & Martín J. 2014. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behav. Ecol. Sociobiol. 68 (4): 571–581. DOI: CrossrefGoogle Scholar

  • Kopena R., Martín J., López P. & Herczeg G. 2011. Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS One 6: e19410. DOI: CrossrefGoogle Scholar

  • Kottler V.A., Koch I., Flötenmeyer M., Hashimoto H., Weigel D. & Dreyer C. 2014. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata). PLoS One 9: e85647. DOI: CrossrefGoogle Scholar

  • Kozlowski J. & Teriokhin A.T. 1999. Allocation of energy between growth and reproduction: the Pontryagin Maximum Principle solution for the case of age-and season-dependent mortality. Evol. Ecol. Res. 1: 423–441.Google Scholar

  • Kuznetsova A., Brockhoff P.B. & Christensen R.H.B. 2016. lmerTest: tests in linear mixed effects models. R package version 2.0-30. http://CRAN.R-project.org/package=lmerTest (accessed 30.05.2016)

  • López P. & Martín J. 2005. Intersexual differences in chemical composition of precloacal gland secretions of the amphisbaenian, Blanus cinereus. J. Chem. Ecol. 31 (12): 2913–2921. DOI: CrossrefGoogle Scholar

  • Love K. & Love B. 2012. Corn Snakes: The Comprehensive Owner’s Guide. I-5 Press, Irvine, CA, 234 pp. ISBN-13: 9781882770700Google Scholar

  • Lozano G.A. 1994. Carotenoids, parasites, and sexual selection. Oikos 70 (2): 309–311.Google Scholar

  • Maia J.P., Harris D.J., Carranza S. & Gómez-Díaz E. 2014. A comparison of multiple methods for estimating parasitemia of haemogregarine hemoparasites (Apicomplexa: Adeleorina) and its applications for studying infection in natural populations. PLoS One 9: e95010. DOI: CrossrefGoogle Scholar

  • Martín J. & López P. 2009. Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, Lacerta schreiberi. Behav. Ecol. Sociobiol. 63 (12): 1743–1755. DOI: CrossrefGoogle Scholar

  • Martín J. & López P. 2014. Pheromones and chemical communication in lizards, Chapter 3, pp. 43–77. In: Rheubert J.L., Siegel D.S. & Trauth S.E. (eds), The Reproductive Biology and Phylogeny of Lizards and Tuatara, CRC Press, Boca Raton, 760 pp. ISBN: 978-1-4665-7986-6Google Scholar

  • Maynard Smith J. & Harper D. 2003. Animal Signals. Oxford University Press, New York, 176 pp. ISBN: 9780198526858Google Scholar

  • McGraw K.J. 2005. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim. Behav. 69 (4): 757–764. DOI: CrossrefGoogle Scholar

  • Megía-Palma R., Martínez J. & Merino S. 2016. A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species. Naturwissenschaften 103 (7-8): 1–10. DOI: CrossrefGoogle Scholar

  • Molnár O., Bajer K., Mészáros B., Török J. & Herczeg G. 2013. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100: 551–558. DOI: CrossrefGoogle Scholar

  • Moreno-Rueda G. 2010. Experimental test of a trade-off between moult and immune response in house sparrows Passer domesticus. J. Evol. Biol. 23 (10): 2229–2237. DOI: .CrossrefGoogle Scholar

  • Olsson M., Stuart-Fox D. & Ballen C. 2013. Genetics and evolution of colour patterns in reptiles. Semin. Cel. Dev. Biol. 24 (6-7): 529–541. DOI: .CrossrefGoogle Scholar

  • Pérez i de Lanuza G., Carazo P. & Font E. 2014. Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. Anim. Behav. 90: 73–81. DOI: CrossrefGoogle Scholar

  • Polnaszek T.J. & Stephens D.W. 2015. Why are signals reliable? Honesty depends on costs, sometimes. Anim. Behav. 110: e13-e16. DOI: CrossrefGoogle Scholar

  • R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Royle N.J., Metcalfe N.B. & Lindström J. 2006. Sexual selection, growth compensation and fast-start swimming performance in Green Swordtails, Xiphophorus helleri. Funct. Ecol. 20 (4): 662–669. DOI: CrossrefGoogle Scholar

  • Royle N.J., Orledge J.M. & Blount J.D. 2015. Early Life-History Effects, Oxidative Stress, and the Evolution and Expression of Animal Signals, pp. 11–46. DOI: . In: Irschick D.J., Briffa M. & Podos J. (eds), Animal Signaling and Function: An Integrative Approach, John Wiley & Sons, Hoboken, NJ, 280 pp. ISBN: 978-0-470-54600-0CrossrefGoogle Scholar

  • Ruxton G.D. & Schaefer H.M. 2011. Resolving current disagreements and ambiguities in the terminology of animal communication. J. Evol. Biol. 24 (12): 2574–2585. DOI: CrossrefGoogle Scholar

  • von Schantz T., Bensch S., Grahn M., Hasselquist D. & Wittzell H. 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266: 1–12. DOI: CrossrefGoogle Scholar

  • San-Jose L.M., Granado-Lorencio F., Sinervo B. & Fitze P.S. 2013. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara). Am. Nat. 181 (3): 396–409. DOI: CrossrefGoogle Scholar

  • Schielzeth H., 2010. Simple means to improve the interpretability of regression coefficients. Met. Ecol. Evol. 1 (2): 103–113. DOI: CrossrefGoogle Scholar

  • Schielzeth H. & Forstmeier W. 2009. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20 (2): 416–420. DOI: CrossrefGoogle Scholar

  • Searcy W.A. & Nowicki S. 2005. The Evolution of Animal Communication: Reliability and Deception in Signalling Systems. Princeton University Press, Princeton, NJ, 288 pp. ISBN: 9780691070957Google Scholar

  • Simons M.J., Cohen A.A. & Verhulst S. 2012. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7: e43088. DOI: CrossrefGoogle Scholar

  • Smith G.C. 1976. Ecological energetics of three species of ectothermic vertebrates. Ecology 57: 252–264. DOI: CrossrefGoogle Scholar

  • Steffen J.E. & McGraw K.J. 2007. Contributions of pterin and carotenoid pigments to dewlap coloration in two anole species. Comp. Biochem. Physiol. B Mol. Biol. 146: 42–46. DOI:CrossrefGoogle Scholar

  • Stevens M. 2013. Sensory Ecology, Behaviour, and Evolution. Oxford University Press, Glasgow, 464 pp. ISBN: 9780199601783Google Scholar

  • Summers K., Speed M.P., Blount J.D. & Stuckert A.M.M. 2015. Are aposematic signals honest? A review. J. Evol. Biol. 28:1583–1599. DOI: CrossrefGoogle Scholar

  • Svensson P.A. & Wong B.B.M. 2011. Carotenoid-based signals in behavioural ecology: a review. Behaviour 148: 131–189. DOI: CrossrefGoogle Scholar

  • Számadó S. 2011. The cost of honesty and the fallacy of the handicap principle. Anim. Behav. 81 (1): 3–10. DOI: CrossrefGoogle Scholar

  • Számadó S. & Penn D.J. 2015. Why does costly signalling evolve? Challenges with testing the handicap hypothesis. Anim. Behav. 110: e9–e12. DOI: CrossrefGoogle Scholar

  • Ullate-Agote A., Milinkovitch M.C. & Tzika A.C. 2015. The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates. Int. J. Dev. Biol. 58 (10-12): 881–888. DOI: .CrossrefGoogle Scholar

  • Václav R., Prokop P. & Fekiac V. 2007. Expression of breeding coloration in European Green Lizards (Lacerta viridis): variation with morphology and tick infestation. Can. J. Zool. 85: 1199–1206. DOI: CrossrefGoogle Scholar

  • Vágási C.I., Pap P.L., Vincze O., Benkő Z., Marton A. & Barta Z. 2012. Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird. PLoS One 7: e40651. DOI: CrossrefGoogle Scholar

  • Vitt L.J. & Caldwell J.P. 2009. Herpethology, 3rd ed. An Introductory Biology of Amphibians and Reptiles. Academic Press, Burlington, MA, 697 pp. ISBN: 978-0-12-374346-6Google Scholar

  • Werner E.E. & Gilliam J.F. 1984. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15 (1): 393–425. DOI: CrossrefGoogle Scholar

  • Whiting M.J., Stuart-Fox D.M., O’Connor D., Firth D., Bennett N.C. & Blomberg S.P. 2006. Ultraviolet signals ultraaggression in a lizard. Anim. Behav. 72 (2): e353–e363. DOI: CrossrefGoogle Scholar

  • Wilgers D.J. & Hebets E.A. 2014. Functional approach to condition, pp. 229–252. DOI: . In: Irschick D.J., Briffa M. & Podos J. (eds), Animal Signaling and Function: An Integrative Approach, John Wiley & Sons, Hoboken, NJ, 280 pp. ISBN: 978-0-470-54600-0CrossrefGoogle Scholar

  • Zahavi A. 1975. Mate selection – a selection for a handicap. J. Theor. Biol. 53 (1): 205–214. DOI: CrossrefGoogle Scholar

  • Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A. & Smith G.M. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, NY, 574 pp. DOI: . ISBN: 978-0-387-87457-9CrossrefGoogle Scholar

About the article

Received: 2016-10-02

Accepted: 2017-01-04

Published Online: 2017-02-18

Published in Print: 2017-01-01


Citation Information: Biologia, Volume 72, Issue 1, Pages 84–95, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0008.

Export Citation

©2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Boglárka Mészáros, Lilla Jordán, Katalin Bajer, José Martín, János Török, and Orsolya Molnár
The Science of Nature, 2019, Volume 106, Number 9-10

Comments (0)

Please log in or register to comment.
Log in