Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 72, Issue 11


Pre-winter larval activity and feeding behavior of Erebia aethiops and E. cassioides in Austrian Alps

Pavel Vrba / Lenka Zapletalová
  • Institute of Entomology, Biological Centre AS CR, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Zapletal
  • Institute of Entomology, Biological Centre AS CR, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Konvička
  • Institute of Entomology, Biological Centre AS CR, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
  • Faculty of Sciences, University South Bohemia, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/biolog-2017-0143


Freshly hatched larvae represent critical but little studied phase in insect development. In butterflies inhabiting seasonally harsh environments, such as mountains of temperate regions, the larvae have only short time available for feeding before entering diapause. In the species rich genus Erebia, post-diapause larvae activate and feed exclusively in evening and late night hours, whereas the diurnal schedule and modifying effects of weather of pre-diapause larvae are practically unknown. Using captive observation with a transplant between alpine (2000 m) and mountain (800 m) altitudes, we studied larval activity of two species, alpine Erebia cassioides and lower-altitude E. aethiops, in Austrian Alps. Both species activated and fed both during day time and after the sunset, contrasting with the situation in post-diapause larvae. Both activity and feeding were strongly and species-specifically affected by temperature, cloudiness and humidity. Additionally, the loweraltitude E. aethiops, but not the alpine E. cassioides, restricted activity and feeding in the alpine altitude, indicating that some factors particular for alpine environments, possibly increased UV load or reduced air pressure, may limit the ability of this mountain species to develop above its vertical distribution limit.

Key words: alpine habitats; altitude; diapause; larval ecology; diurnal rhythm; Lepidoptera; Satyrinae


  • Akaike H. 1974. New Look At Statistical Model Identification. IEEE T Automat Contr. 19: 716–723. CrossrefGoogle Scholar

  • Ali A., Rashid M.A., Huang Q.Y. & Lei C.L. 2016. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environ. Sci. Pollut. R 23: 17002–17007. CrossrefWeb of ScienceGoogle Scholar

  • Cizek L., Fric Z. & Konvicka M. 2006. Host plant defences and voltinism in European butterflies. Ecol. Entomol. 31: 337– 344. CrossrefGoogle Scholar

  • Dinca V., Cuvelier S., Zakharov E.V., Hebert P.D.N. & Vila R. 2010. Biogeography, ecology and conservation of Erebia oeme (Hubner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Ann. Soc. Entomol. Fr. 46: 486–498. .CrossrefWeb of ScienceGoogle Scholar

  • Fartmann T. & Hermann G. 2006. Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa – von den Anfängen bis heute. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68 (3/4): 11–57.Google Scholar

  • Gauld I.D. 1986. Latitudinal gradients in ichneumonid speciesrichness in Australia. Ecol. Entomol. 11 (2): 155–161. CrossrefGoogle Scholar

  • Guven E., Pandir D. & Bas H. 2015. UV radiation-induced oxidative stress and DNA damage on Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae. Turk. Entomol. Derg-Tu 39: 23–33. CrossrefGoogle Scholar

  • Hodkinson I.D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80 (3): 489–513. CrossrefGoogle Scholar

  • Kleckova I. & Klecka J. 2016. Facing the Heat: Thermoregulation and behaviour of lowland species of a cold-dwelling butterfly genus, Erebia. PLoS ONE 11: e0150393. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kleckova I., Konvicka M. & Klecka J. 2014. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine-scale habitat heterogeneity J. Therm. Biol. 41: 50–58. CrossrefWeb of SciencePubMedGoogle Scholar

  • Konvička M., Beneš J., Čížek O., Kuras T. & Klečková I. 2016. Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? Eur. J. Entomol. 113: 295–301. CrossrefWeb of ScienceGoogle Scholar

  • Kuras T., Beneš J. & Konvička M. 2000. Differing habitat affinities of four Erebia species (Lepidoptera: Nymphalidae, Satyrinae) in the Hruby Jesenik Mts, Czech Republic. Biologia 55 (2): 169–175.Google Scholar

  • Kuras T., Beneš J., Konvička M. & Honč L. 2001. Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera Nymphalidae, Satyrinae). Atalanta 32 (1/2): 187–196.Google Scholar

  • Parmesan C., Root T.L. & Willig M.R. 2000. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81 (3): 443–450. CrossrefGoogle Scholar

  • Pena C., Witthauer H., Kleckova I., Fric Z. & Wahlberg N. 2015. Adaptive radiations in butterflies: evolutionary history of the genus Erebia (Nymphalidae: Satyrinae). Biol. J. Linn. Soc. 116: 449–467. CrossrefWeb of ScienceGoogle Scholar

  • Polic D., Fiedler K., Nell C. & Grill A. 2014. Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. J. Insect Conserv. 18: 1153– 1161. CrossrefWeb of ScienceGoogle Scholar

  • R Development Core Team 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/.

  • Sato Y., Tanaka T., Imafuku M. & Hidaka T. 1983. How does diurnal Apanteles kariyai parasitize and egress from nocturnal host larva? Kontyu 51: 128–139.Google Scholar

  • Scalercio S., Bonacci T., Mazzei A., Pizzolotto R. & Brandmayr P. 2014. Better up, worse down: bidirectional consequences of three decades of climate change on a relict population of Erebia cassioides. J. Insect Conserv. 18: 643–650. CrossrefWeb of ScienceGoogle Scholar

  • Schmitt T. & Haubrich K. 2008. The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Mol. Ecol. 17: 2194–2207. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Schmitt T., Hewitt G.M. & Muller P. 2006. Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. J. Evol. Biol. 19: 108–113. CrossrefPubMedGoogle Scholar

  • Schmitt T., Louy D., Zimmermann E. & Habel J.C. 2016. Species radiation in the Alps: multiple range shifts caused diversification in Ringlet butterflies in the European high mountains. Org. Divers. Evol. 16: 791–808. CrossrefWeb of ScienceGoogle Scholar

  • Slamova I., Klecka J. & Konvicka M. 2013. Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv. Divers. 6: 243–254. CrossrefWeb of ScienceGoogle Scholar

  • Sonderegger P. 2005. Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia). Verlag Peter Sonderegger, Biel / Bienne, 712 pp..Google Scholar

  • Stuhldreher G. & Fartmann T. 2015. Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur. J. Entomol. 112: 493–499. CrossrefWeb of ScienceGoogle Scholar

  • Stuhldreher G., Hermann G. & Fartmann T. 2014. Cold-adapted species in a warming world – an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol. Exp. Appl. 151: 270–279. CrossrefWeb of ScienceGoogle Scholar

  • Tennent W.J. 2008. A checklist of the satyrine genus Erebia (Lepidoptera) (1758-2006). Zootaxa 1900: 1–109.Google Scholar

  • Tolman T. & Lewington R. 1997. Butterflies of Britain and Europe. HarperCollins Publishers Ltd., London, 320 pp. ISBN-10: 0007189915, ISBN-13: 9780007189915Google Scholar

  • Vrba P., Konvicka M. & Nedved O. 2012. Reverse altitudinal cline in cold hardiness among Erebia butterflies. Cryo-Lett. 33: 251–258. PMID: 22987236Google Scholar

  • Wipking W. & Mengelkoch C. 1994. Control of alternate-year flight activities in high-alpine Ringlet butterflies (Erebia, Satyridae) and Burnet moths (Zygaena, Zygaenidae) from temperate environments, pp. 313–347. . In: Danks H.V. (ed.), Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control. Kluwer Academic Publisher, Dordrecht, 365 pp. ISBN: 978-90-481-4401-3CrossrefGoogle Scholar

About the article

Received: 2017-01-27

Accepted: 2017-09-21

Published Online: 2017-12-29

Published in Print: 2017-11-27

Citation Information: Biologia, Volume 72, Issue 11, Pages 1334–1340, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0143.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in