Jump to ContentJump to Main Navigation
Show Summary Details
More options …


More options …
Volume 72, Issue 4


Role of ethylene and phospholipid-mediated signalling in mycotoxin-induced programmed cell death in the apical part of maize roots

Vladimír Repka
  • Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roderik Fiala
  • Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Pavlovkin
  • Corresponding author
  • Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/biolog-2017-0040


Maize (Zea mays L. cv. Thermo) root segments were treated for 24 h with 100 μg mL-1 of zearalenone and its derivatives α- and β-zearalenol. The mycotoxin treatment resulted in cell death which was evident by Evans blue staining and was accompanied by DNA release/fragmentation. Mycotoxin-induced programmed cell death (MPCD) was abolished by sub-micromolar concentrations of caspase-specific peptide inhibitors pointing to a MPCD mechanism similar to animal apoptosis. Here we demostrate that exogenous ethylene and ethylene precursor (aminocyclopropane-1-carboxylic acid; ACC) substantially blocked MPCD while the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) did not markedly reduce cell death rate. In addition, Western blot analyses revealed that MPCD was induced via ethylene-regulated expression of DAD1 protein. Pre-treatment of root segments with inhibitors of phospholipase C and D signalling pathway intermediates significantly reduced the rate of MPCD. Treatment with mastoparan and lyso-phosphatidic acid (L-PA), G protein activator and analogue of the lipid second messenger phosphatidic acid (PA), respectively, stimulated cell death. Furthermore, application of lipid and protein kinase inhibitors (wortmannin, Go 6983, staurosporine) also reduced cell death, indicating that various kinases are a part of signalling cascade involved in MPCD. Taken together, the results presented in this paper provide direct evidence that MPCD exhibits formal apoptotic-like features, involves caspase-mediated pathway and is regulated via ethylene and phospholipid signal transduction pathways.

Key words: Zea mays L.; ethylene; phospholipids; programmed cell death; zearalenone; zearalenol


  • Apte S.S., Mattei M.G., Seldin M.F. & Olsen B.R. 1995. The highly conserved defender against the death 1 (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett. 363: 304–306.Google Scholar

  • Asai T., Stone J.M., Heard J.E., Kovtun Y., Yorgey P., Sheen J. & Ausubel F.M. 2000. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12: 1823–1836.CrossrefGoogle Scholar

  • Berthiller F., Werner U., Sulyok M., Krska R., Hauser M.-T. & Schumacher R. 2006. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit. Contam. 23: 1194– 1200.Google Scholar

  • Biesaga-Kosćielniak J. & Filek M. 2010. Occurrence and physiology of zearalenone as a new plant hormone, pp. 419–435. In: Lichtfouse E. (ed.), Sociology, organic farming, climate change and soil science. Springer, Berlin.Google Scholar

  • Choi M.S., Kim W., Lee C. & Oh C.S. 2013. Harpins, multifunctional protein secreted by gram-negative plant-pathogenic bacteria. Mol. Plant Microbe In. 26: 1115-1122.Google Scholar

  • Coffeen W.C. & Wolpert T.J. 2004. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16: 857–873.CrossrefGoogle Scholar

  • Dong Y.H., Zhan X.C., Kvarnheden A., Atkinson R.G., Morris B.A. & Gardner R.C. 1998. Expression of a cDNA from apple encoding a homologue of DAD1, an inhibitor of programmed cell death. Plant Sci. 139: 165–174.Google Scholar

  • Engelhardt G., Zill G., Wohner B. & Walln¨ofer P.R. 1988. Transformation of the Fusarium mycotoxin zearalenone in maize cell suspension cultures. Naturwissensch. 75: 309–310.Google Scholar

  • Engelhardt G., Ruhland M. & Walln¨ofer P.R. 1999. Metabolism of mycotoxins in plants. Adv. Food Sci. 21: 71–78.Google Scholar

  • Gareis M., Bauer J., Thiem J., Plank G., Grabley S. & Gedek B. 1990. Cleavage of zearalenone glycoside, a “masked” mycotoxin during digestion in swine. J. Vet. Med. B. 37: 236–240.Google Scholar

  • Gillaspy G.E., Keddie J.S., Oda K. & Gruissem W. 1995. Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7: 2175–2185.CrossrefGoogle Scholar

  • Hoffman T., Schmidt J.S., Zheng X. & Bent A.F. 1999. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119: 935–950.Google Scholar

  • Jiao J., Zhou B., Zhu X., Gao Z. & Liang Y. 2013. Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells. Planta 238: 727– 737.Web of ScienceGoogle Scholar

  • Jiao J., Sun L., Zhou B., Gao Z., Hao Y., Zhu X. & Liang Y. 2014. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells. J. Plant Physiol. 171: 1197-1203.Web of ScienceGoogle Scholar

  • Jones A.M. & Dangl J.L. 1996. Logjam at the Styx: programmed cell death in plants. Trends Plant Sci. 1: 114-119.Google Scholar

  • Kelleher D.J. & Gilmore R. 2006. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16: 47–62.Google Scholar

  • Kosćielniak J., Biesaga-Kosćielniak J., Janeczko A., Filek W. & Kalaji H.M. 2009. Can the Gibberella zae toxin zearalenone affect the photosynthetic productivity and increase yield formation in spring wheat and soybean plants? Photosynthetica 47: 586-594.Google Scholar

  • Kumar N. & Sinha K.K. 1995. Effect of zearalenone on some physiological and biochemical processes of gram and mustard seeds, pp. 149-162. In: Roy A.K. & Sinha K.K. (eds), Recent advances in phytopathological researches. M.D. Publications PVT, New Delhi, India.Google Scholar

  • Krzymowska M., Konopka-Postupolska D., Sobczak M., Macioszek V., Ellis B.E. & Hennig J. 2007. Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death. Plant J. 50: 253-264.Google Scholar

  • Liu Y., Schiff M., Czymmek K., Talloczy Z., Levine B. & Dinesh-Kumar S.P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121: 567-577.Google Scholar

  • Meng F.J., Han Y.Z., Que Y.M. & Wang H. 1992. Zearalenone, a key substance controlling plant development, pp. 291–297. In: Karssen C.M., Van Loon L.C. & Vreuggdennilcedes D. (eds), Advances in Plant Regulation. Kluwer, Dordrecht.Google Scholar

  • Mueller-Roeber B. & Pical C. 2002. Inositol phospholipid metabolism in Arabidopsis: characterized and putative iso-forms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 130: 22–46.Google Scholar

  • Munnik T. & Meijer H.J. 2001. Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett. 498: 172-178.Google Scholar

  • Munnik T., Arisz S.A., De Vrije T. & Musgrave A. 1995. G protein activation stimulates phospholipase D signaling in plants. Plant Cell Online 7: 2197-2210.CrossrefGoogle Scholar

  • Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 15: 473-497.Google Scholar

  • Murphy A.M., Otto B., Brearley C.A., Carr J.P. & Hanke D.E. 2008. A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J. 56: 638–652.Web of ScienceGoogle Scholar

  • Norman-Setterblad C., Vidal S. & Palva E.T. 2000. Interacting signal pathways control defence gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Microbe In. 13: 430-438.Google Scholar

  • Pennel R.I. & Lamb C. 1997. Programmed cell death in plants. Plant Cell 9: 1157-1168.CrossrefGoogle Scholar

  • Plett J.M., Cvetkovska M., Makenson P., Xing T. & Regan S. 2009. Arabidopsis ethylene receptors have different roles in Fumonisin B1-induced cell death. Physiol. Mol. Plant Pathol. 74: 18-26.Google Scholar

  • Repka V. 2006. Early defence responses induced by two distinct elicitors derived from a Botrytis cinerea in grapevine leaves and cell suspensions. Biol. Plantarum 50: 94–106.Google Scholar

  • Repka V., Fiala R., Luxová M. & Pavlovkin J. 2014. Responses of maize root cells to zearalenone and its derivatives a-zearalenol and β-zearalenol. Eur. J. Plant Pathol. 138: 787– 797.Google Scholar

  • Richberg M.H., Aviv D.H. & Dangl J.L. 1998. Dead cell do tell tales. Curr. Opin. Plant Biol. 1: 480-485.Google Scholar

  • Ruelland E., Kravets V., Derevyanchuk M., Martinec J., Zachowskia A. & Pokotylo I. 2015. Role of phospholipid signalling in plant environmental responses. Environ. Exp. Bot. 114: 129-143.Web of ScienceGoogle Scholar

  • Schollenderger M., Drochner W. & M¨uller H.M. 2007. Fusarium toxins of the scirpentriol subgroup: a review. Mycopathol. 165: 101-108.Google Scholar

  • Shiskova S. & Dubrovsky J.G. 2005. Developmental programmed cell death in primary roots of Sonoran desert Cactaceae. Amer. J. Bot. 92: 1590–1594.Google Scholar

  • Singh V.K. & Upadhyay R.S. 2014. Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. Bot. Stud. 55: 66.Google Scholar

  • Testerink C. & Munnik T. 2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci. 10: 367–375.Google Scholar

  • Testerink C., Larsen P.B., McLoughlin F., van der Does D., van Himbergen J.A. & Munnik T. 2008. PA, a stress-induced short cut to switch-on ethylene signalling by switching-off CTR1? Plant Signal. Behav. 3: 681–683.Google Scholar

  • Thomma B.P., Eggermont K., Tierens K.F. & Broekaert W.F. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121: 1093–1102.Google Scholar

  • Vianello M. & Macri F. 1978. Inhibition of plant cell membrane transport phenomena induced by zearalenone. Planta 143: 51–57.Google Scholar

  • Vianello M. & Macri F. 1981. Effect of zearalenone (F-2) on pea steam, maize root and rat liver mitochondria. Planta 153: 443–446.Google Scholar

  • Yamada T., Takatsu Y., Kasumi M., Marubashi W. & Ichimura K. 2004. A homolog of the defender against apoptotic death gene (DAD1) in senescing gladiolus petals is down-regulated prior to the onset of programmed cell death. J. Plant Physiol. 161: 1281–1283.Google Scholar

  • Zhang X., Wu Q., Cui S., Ren J., Qian W., Yang Y., He S., Chu J., Sun X., Yan C., Yu X. & An C. 2015. Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4. J. Exp. Bot. 66: 2709–2721.Google Scholar

  • Zinedine A., Soriano J.M., Molt˜o J.C. & Maňes J. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem. Toxicol. 45: 1–18.Web of ScienceGoogle Scholar

  • Zonia L. & Munnik T. 2006. Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses, pp. 207–237. In: Majunder A. & Biswas B. (eds), Subcellular Biochemistry Vol. 39: Biology of Inositols and Phosphoinositides. Kluwer/Plenum Publishers, Dordrecht.Google Scholar

About the article

Received: 2016-11-22

Accepted: 2017-01-12

Published Online: 2017-04-28

Published in Print: 2017-04-25

Citation Information: Biologia, Volume 72, Issue 4, Pages 378–387, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0040.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in