Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 4

Issues

Dietary alpha-ketoglutarate partially prevents age-related decline in locomotor activity and cold tolerance in Drosophila melanogaster

Maria M. Bayliak
  • Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria P. Lylyk
  • Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oksana M. Sorochynska
  • Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/biolog-2017-0042

Abstract

Alpha-ketoglutarate (AKG), a key intermediate in the Krebs cycle and metabolism of amino acids, is one of dietary supplements studied actively during last decade. In this work, we examined the ability of dietary AKG to prevent age-related functional decline in D. melanogaster. For that, some metabolic processes and physiological functions, such as climbing activity and cold resistance, were studied in young (2 days post-eclosion) and middle-aged (24 days) D. melanogaster w1118 adults maintained on AKG-supplemented diet. Both locomotor activity and cold resistance measured as chill coma recovery time (CCRT) impaired in middle-aged flies compared with young ones. Diet with 10 mM AKG improved climbing activity in middle-aged flies of both sexes. A positive impact of AKG on CCRT was found in young flies of both sexes and in middle-aged females. AKG-containing diet did not affect cold hardening in young flies, whereas middle-aged flies fed on AKG were more resistant to repeated cold treatments than control ones. Two-day old flies reared on AKG had higher free amino acid level, including that of proline. At 24-day age, AKG-fed females but not males had higher levels of free amino acids and glucose, and higher total antioxidant capacity than control ones. We conclude that both the enhancement of antioxidant capacity and synthesis of amino acids can contribute to AKG-promoted reduction in CCRT. However, since dietary AKG enhanced locomotor activity and resistance to repeated cold stresses in middle-aged both males and females, mechanisms of beneficial effects of AKG seem to be more complicated, that is discussed.

Key words: amino acids; total antioxidant capacity; glucose; functional senescence; stress resistance

References

  • Andersen L.H., Kristensen T.N., Loeschcke V., Toft S. & Mayntz D. 2010. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect. Physiol. 56: 336–340. DOI: 10.1016/j.jinsphys.2009.11.006CrossrefGoogle Scholar

  • Andersen J.L., Manenti T., Sørensen J.G., Loeschcke V. & Overgaard J. 2015. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29: 55–65. DOI: 10.1111/1365-2435.12310CrossrefGoogle Scholar

  • Bayliak M.M., Lylyk M.P., Shmihel H.V., Sorochynska O.M., Manyukh O.V., Pierzynowski S.G. & Lushchak V.I. 2016. Dietary alpha-ketoglutarate increases cold tolerance in Drosophila melanogaster and enhances protein pool and antioxidant defense in sex-specific manner. J. Therm. Biol. 60: 1–11. DOI: 10.1016/j.jtherbio.2016.06.001CrossrefGoogle Scholar

  • Bayliak M.M., Shmihel H.V., Lylyk M.P., Vytvytska O.M., Storey J.M., Storey K.B. & Lushchak V.I. 2015. Alpha-ketoglutarate attenuates toxic effects of sodium nitroprusside and hydrogen peroxide in Drosophila melanogaster. Environ. Toxicol. Pharmacol. 40: 650-659. DOI: 10.1016/j.etap.2015. 08.016CrossrefGoogle Scholar

  • Bergman I. & Loxley R. 1970. New spectrophotometric method for the determination of proline in tissue hydrolyzates. Anal. Chem. 42: 702-706. DOI: 10.1021/ac60289a036CrossrefGoogle Scholar

  • Bode A.M., Foster J.D. & Nordlie R.C. 1992. Glyconeogenesis from L-proline involves metabolite inhibition of the glucose-6-phosphatase system. J. Biol. Chem. 267: 2860-2863.Google Scholar

  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248-254. DOI: 10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • Chin R.M., Fu X., Pai M.Y., Vergnes L., Hwang H. Deng C, Diep S., Lomenick B., Meli VS., Monsalve G.C., Hu E., Whelan S.A., Wang J.X., Jung G, Solis G.M., Fazlollahi F., Kaweeteerawat Ch., Quach A., Nili M., Krall A.S., Godwin H.A., Chang H.R., Faull K.F., Guo F., Jiang M., Trauger S.A., Saghatelian A., Braas D., Christofk H.R., Clarke C.F., Teitell M.A., Petrascheck M., Reue K., Jung M.E., Frand A.R. & Huang J. 2014. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510: 397-401. DOI: 10.1038/naturel3264CrossrefWeb of ScienceGoogle Scholar

  • Colinet H., Lee S.F. & Hoffmann A. 2010a. Functional characterization of the Frost gene in Drosophila melanogaster: importance for recovery from chill coma. PLoS One 5: el0925. DOI: 10.1371/journal.pone.0010925CrossrefGoogle Scholar

  • Colinet H., Lee S.F. & Hoffmann A. 2010b. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J. Exp. Biol. 213 (Pt 24): 4146-4150. DOI: 10.1242/jeb.051003CrossrefGoogle Scholar

  • Cook-Wiens E. & Grotewiel M.S. 2002. Dissociation between functional senescence and oxidative stress resistance in Drosophila. Exp. Gerontol. 37: 1347-1357. DOI: 10.1016/ S0531-5565(02)00096-7CrossrefGoogle Scholar

  • David R.J., Gibert P., Pla E., Petavy G. & Karan D. & Moreteau B. 1998. Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. Therm. Biol. 23: 291— 299. DOI: 10.1016/S0306-4565(98)00020-5CrossrefGoogle Scholar

  • Erel O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 37: 277-285. DOI: 10.1016/j.clinbiochem.2003.11.015CrossrefGoogle Scholar

  • Gargano J.W., Martin I., Bhandari P. & Grotewiel M.S. 2005. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp. Gerontol. 40: 386-395. DOI: 10.1016/j.exger.2005.02.005CrossrefGoogle Scholar

  • Gibert P. & Huey R.B. 2001. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74: 429-234. DOI: 10.1086/320429CrossrefGoogle Scholar

  • Gospodaryov D.V, Lushchak O.V, Rovenko B.M., Perchulyn N.V., Gerards M., Tuomela T. & Jacobs H.T. 2014. Ciona intestinalis NADH dehydrogenase NDX confers stress-resistance and extended lifespan on Drosophila. Biochim. Bio-phys. Acta 1837: 1861-1869. DOI: 10.1016/j.bbabio.2014.08. 001CrossrefGoogle Scholar

  • Gospodaryov D.V, Yurkevych I.S., Lushchak O.V. & Lushchak VI. 2013. Correction: Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance. Longevity & Healthspan 2: 12. DOI: 10.1186/2046-2395-2-12.CrossrefGoogle Scholar

  • Grotewiel M.S., Martin I., Bhandari P. & Cook-Wiens E. 2005. Functional senescence in Drosophila melanogaster. Aging Res. Rev. 4: 372-397. DOI: 10.1016/j.arr.2005.04.001CrossrefGoogle Scholar

  • Harrison A.P. & Pierzynowski S.G. 2008. Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancero-genesis, all viewed from a healthy ageing perspective state of the art-review article. J. Physiol. Pharmacol. 59 (Suppl. 1): 91-106. PMID: 18802218Google Scholar

  • Ismail M.Z., Hodges M.D., Boylan M., Achall R., Shirras A., Broughton S.J. 2015. The Drosophila insulin receptor independently modulates lifespan and locomotor senescence. PLoS One 10: e0125312. DOI: 10.1371/journal.pone.0125312CrossrefGoogle Scholar

  • Jones M.A. & Grotewiel M. 2011. Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp. Gerontol. 46: 320-325. DOI: 10.1016/j.exger.2010.08.012CrossrefGoogle Scholar

  • Kelty J.D. & Lee R.E. 2001. Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles. J. Exp. Biol. 204: 1659–1666. PMID: 11398755Google Scholar

  • Kostal V, Korbelova J., Rozsypal J., Zahradníčková H., Cimlová J., Tomčala A. & Šimek P. 2011. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS ONE 6: e25025. DOI: 10.1371/journal.pone.0025025Google Scholar

  • Lalouette L., Kostál V, Colinet H., Gagneul D. & Renault D. 2007. Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. FEBS J. 274: 1759-1767. DOI: l0.1111/j.1742-4658.2007.05723.xWeb of ScienceGoogle Scholar

  • Lalouette L.A., Williams C.M., Hervant F., Sinclair S.J. & Renault D. 2011. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158: 229-234. DOI: 10.1016/j.cbpa.2010.11.007Web of ScienceCrossrefGoogle Scholar

  • Lambert B.D., Filip R., Stoll B., Junghans P., Derno M., Hennig U., Souffrant W.B., Pierzynowski S. & Burrin D.G. 2006. First-pass metabolism limits the intestinal absorption of enteral alpha-ketoglutarate in young pigs. J. Nutr. 136: 2779— 2784. PMID: 17056800Google Scholar

  • Lee Y.P. & Takahashi T. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal. Biochem. 14: 71-77. DOI: 10.1016/0003-2697(66)90057-1CrossrefGoogle Scholar

  • Leffelaar D. & Grigliatti T. 1984. Age-dependent behavior loss in adult Drosophila melanogaster. Dev. Genet. 4: 211–227. DOI: 10.1002/dvg. 1020040307CrossrefGoogle Scholar

  • Long J., Gao H., Sun L., Liu J. & Zhao-Wilson X. 2009. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res. 12: 321-331. DOI: 10.1089/rej.2009.0877CrossrefGoogle Scholar

  • Lushchak V.I. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224: 164-175. DOI: 10.1016/j.cbi.2014.10.016CrossrefWeb of ScienceGoogle Scholar

  • Lushchak O.V., Gospodaryov D.V., Rovenko B.M., Glovyak A.D., Yurkevych I.S., Klyuba V.P. Shcherbij M.V. & Lushchak V.I. 2012. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 67: 118-125. DOI: 10.1093/gerona/glrl84CrossrefGoogle Scholar

  • Lushchak O.V, Gospodaryov D.V, Rovenko B.M., Yurkevych I.S., Perkhulyn N.V. & Lushchak VI. 2014. Specific dietary carbohydrates differentially influence the life span and fecundity of Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 69: 3-12. DOI: 10.1093/gerona/glt077CrossrefGoogle Scholar

  • Lushchak O.V, Rovenko B.M., Gospodaryov D.V. & Lushchak VI. 2011. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160: 27-34. DOI: 10.1016/j.cbpa.2011.04.019CrossrefGoogle Scholar

  • MacMillan H.A., Guglielmo C.G. & Sinclair B.J. 2009. Membrane remodeling and glucose in Drosophila melanogaster. a test of rapid cold-hardening and chilling tolerance hypotheses. J. Insect Physiol. 55: 243-249. DOI: 10.1016/j.jinsphys.2008.11. 015.CrossrefGoogle Scholar

  • MacMillan H.A., Williams C.M., Staples J.F. & Sinclair B.J. 2012. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc. Natl. Acad. Sci. U.S.A. 109: 20750-20755. DOI: 10.1073/pnas. 1212788109CrossrefGoogle Scholar

  • Michaud M.R. & Denlinger D.L. 2004. Molecular modalities of insect cold survival: current understanding and future trends. Int. Congr. Ser. 1275: 32-46. DOI: 10.1016/j.ics.2004.08.059CrossrefGoogle Scholar

  • Misener S.R., Chen C. & Walker V.K. 2001. Cold tolerance and proline metabolic gene expression in Drosophila melanogaster. J. Insect Physiol. 47: 393-400. DOI: 10.1016/ S0022-1910(00)00141-4CrossrefGoogle Scholar

  • Morrow G. & Tanguay R.M. 2003. Heat shock proteins and aging in Drosophila melanogaster. Semin. Cell Dev. Biol. 14: 291— 299. DOI: 10.1016/j.semcdb.2003.09.023CrossrefGoogle Scholar

  • Niemiec T., Sikorska J., Harrison A., Szmidt M., Sawosz E., Wirth-Dzieciolowska E., Wilczak J. & Pierzynowski S. 2011. Alpha-ketoglutarate stabilizes redox homeostasis and improves arterial elasticity in aged mice. J. Physiol. Pharmacol. 62: 37-43. PMID: 21451208Google Scholar

  • Nilson T.L., Sinclair B.J. & Roberts S.P. 2006. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect. Physiol. 52: 1027-1033. DOI: 10.1016/j.jinsphys.2006.07.001CrossrefGoogle Scholar

  • Pandey A., Vimal D., Chandra S., Saini S., Narayan G. & Kar Chowdhuri D. 2014. Long-term dietary exposure to low concentration of dichloroacetic acid promoted longevity and attenuated cellular and functional declines in aged Drosophila melanogaster. Age 36: 9628. DOI: 10.1007/sll357-014-9628-1CrossrefGoogle Scholar

  • Panikar C.S., Rajpathak S.N., Abhyankar V, Deshmukh S. & De-obagkar D.D. 2015. Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster. Mol. Biol. Rep. 42: 1615-1621. DOI: 10.1007/sll033-015-3931-5CrossrefGoogle Scholar

  • Radzki R.P., Bienko M. & Pierzynowski S.G. 2012. Anti-osteopenic effect of alpha-ketoglutarate sodium salt in oviarectomized rats. J. Bone Miner. Metab. 30: 651-659. DOI: 10.1007/s00774-012-0377-x.CrossrefGoogle Scholar

  • Rovenko B.M., Kubrak O.I., Gospodaryov D.V, Perkhulyn N.V, Yurkevych I.S., Sanz A., Lushchak O.V. & Lushchak V.I. 2015. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect. Physiol. 79: 42–54. DOI: 10.1016/j.jinsphys.2015.05.007CrossrefGoogle Scholar

  • Salminen A., Kauppinen A. & Kaarniranta K. 2015. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell. Mol. Life Sci. 72: 3897-914. DOI: 10.1007/s00018-015-1978-zWeb of ScienceCrossrefGoogle Scholar

  • Sies H. 2015. Oxidative stress: a concept in redox biology and medicine. Redox Biology 4: 180-183. DOI: 10.1016/j.redox. 2015.01.002Web of ScienceCrossrefGoogle Scholar

  • Storey K.B. & Storey J.M. 2013. Molecular biology of freezing tolerance. Comp. Physiol. 3: 1283-1308. DOI: 10.1002/cphy c130007CrossrefGoogle Scholar

  • Vasylkovska R., Petriv N. & Semchyshyn H. 2015. Carbon sources for yeast growth as a precondition of hydrogen peroxide induced hormetic phenotype. Int. J. Microbiol. 2015: 697813. DOI: 10.1155/2015/697813CrossrefGoogle Scholar

  • Wang L., Xu Q., Wang C, Li J., Chen D., Zhao Z., Luo L. & Du X. 2016. Effects of dietary ct-ketoglutarate supplementation on the antioxidant defense system and HSP 70 and HSP 90 gene expression of hybrid sturgeon Acipenser schrenckii ♀ x A. baerii ♂ exposed to ammonia-N stress. Aquacult. Res. DOI: 10.1111/are.l3063CrossrefGoogle Scholar

  • Whillier S., Garcia B., Chapman B.E., Kuchel P.W. & Raftos J.E. 2011. Glutamine and ct-ketoglutarate as glutamate sources for glutathione synthesis in human erythrocytes. FEBS J. 278: 3152-3163. DOI: 10.1111/j.1742-4658.2011.08241.xCrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-10-12

Accepted: 2017-01-25

Published Online: 2017-04-28

Published in Print: 2017-04-25


Conflict of interest: The authors have declared that there is no conflict of interest.


Citation Information: Biologia, Volume 72, Issue 4, Pages 458–467, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0042.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. P. Lylyk, M. M. Bayliak, H. V. Shmihel, J. M. Storey, K. B. Storey, and V. I. Lushchak
The Ukrainian Biochemical Journal, 2018, Volume 90, Number 6, Page 49

Comments (0)

Please log in or register to comment.
Log in