Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 4

Issues

The evaluation of endocrine regulators after intramuscular and oral application of cyanogenic glycoside amygdalin in rabbits

Marek Halenar
  • Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lubica Chrastinova
  • Animal Production Research Centre Nitra, National Agricultural and Food Center, Hlohovecká 2, SK-95141 Lužianky, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lubomír Ondruska
  • Animal Production Research Centre Nitra, National Agricultural and Food Center, Hlohovecká 2, SK-95141 Lužianky, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rastislav Jurcik
  • Animal Production Research Centre Nitra, National Agricultural and Food Center, Hlohovecká 2, SK-95141 Lužianky, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarina Zbynovska
  • Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Tusimova
  • Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anton Kovacik
  • Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adriana Kolesarova
  • Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/biolog-2017-0044

Abstract

The present in vivo study was designed to reveal whether amygdalin is able to cause changes in the endocrine profile and thus alter the key reproductive and physiological functions, using rabbits as a biological model. 40 adult female rabbits were randomly divided into five groups: the control group without any amygdalin administration, two experimental groups received a daily intramuscular injection of amygdalin at dose 0.6 and 3.0 mg kg-1 b.w. and other two groups were fed by crushed apricot seeds at dose 60 and 300 mg kg-1 b.w., mixed with commercial feed over the period of 28 days. The body weight of each experimental animal was recorded weekly during the whole study. Plasma levels of steroid (progesterone, 17β-estradiol, testosterone), thyroid (triiodothyronine, thyroxine, thyroid-stimulating hormone), as well as anterior pituitary (prolactin, luteinizing hormone) hormones were assessed by ELISA. Intramuscular application of amygdalin did not affect (P ≥ 0.05) the plasma levels of none of the endocrine regulators selected. Oral form of amygdalin did not induce significant changes in the plasma levels of examined hormones either. Similarly, no clinically noticeable changes in the average body weight of experimental animals were observed. Our findings indicate that intramuscular and oral application of amygdalin did not significantly affect the plasma levels of studied endocrine regulators in experimental rabbits. In this in vivo study, no obvious beneficial or negative effects of amygdalin on the physiological functions of female rabbits were demonstrated. Short-term intake of amygdalin at the recommended doses does not represent risk for animal health.

Key words: amygdalin; rabbits; endocrine profile; body weight

References

  • Ames M.M., Moyer T.P., Kovach J.S., Moertel C.G. & Rubin J. 1981. Pharmacology of amygdalin (Laetrile) in cancer patients. Cancer Chemother. Pharmacol. 6: 51–57. CrossrefGoogle Scholar

  • Balazi A., Foldesiova M., Chrastinova L., Sirotkin A.V. & Chrenek P. 2013. The effect of herbal plants Yucca, schidigera, and Curcuma longa on rabbit female reproduction. Slovak J. Anim. Sci. 46: 161–171.Google Scholar

  • Balmer C. 1998. Alternative therapies in cancer patient care. Highlight. Oncol. Pract. 15: 83–84.Google Scholar

  • Chang H.K., Shin M.S., Yang H.Y., Lee J.W., Kim Y.S., Lee M.H., Kim J., Kim K.H. & Kim C.J. 2006. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol. Pharm. Bull. 29: 1597–1602. CrossrefGoogle Scholar

  • Chedrese J.P. (ed.). 2009. Reproductive Endocrinology: A Molecular Approach. Springer Science+Business Media LLC., New York, 361 pp. ISBN: 978-0-387-88186-7Google Scholar

  • Chow H.H.S., Garland L.L., Heckman-Stoddard B.M., Hsu C.H., Butler V.D., Cordova C.A., Chew W.M. & Cornelison T.L. 2014. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones. J. Transl. Med. 12: 223. CrossrefWeb of ScienceGoogle Scholar

  • EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). 2016. Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA J. 14 (4): 4424. CrossrefGoogle Scholar

  • FAO/WHO (Food and Agricultural Organization/World Health Organization). 2012. Safety evaluation of certain food additives and contaminants. Prepared by the seventy-fourth meeting of the joint FAO/WHO expert committee on food additives (JECFA). WHO Food Additives Series 65: 1–825. ISBN: 978-92-4-166065-5Google Scholar

  • Fukuda T., Ito H., Mukainaka T., Tokuda H., Nishino H. & Yoshida T. 2003. Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol. Pharma. Bull. 26: 271–273. PMID: 12576693Google Scholar

  • Galik B., Arpasova H., Biro D., Rolinec M., Simko M., Juracek M. & Herkel R. 2014. The effect of dietary Rhus coriaria L. on table eggs yolk nutrients composition. Acta Fytotechn. Zootechn. 17 (3): 93–95. CrossrefGoogle Scholar

  • Galik B., Biro D., Juracek M., Simko M. & Gyongyova E. 2009. Koncentracije mineralnih elemenata u različitim konzerviranim krmivima. The concentration of mineral elements in different conserved feeds. Krmiva: Časopis o hranidbi životinja proizvodnji i tehnologiji krme [Krmiva: Review for Animal Feeding, Pproduction and Feed Technology] (Zagreb) 51 (4): 223–227.Google Scholar

  • Halenar M., Medvedova M., Maruniakova N. & Kolesarova A. 2015. Assessment of a potential preventive ability of amygdalin in mycotoxin-induced ovarian toxicity. J. Environ. Sci. Health. 50: 411–416. CrossrefGoogle Scholar

  • Huebner J., Micke O., Muecke R., Buentzel J., Prott F.J., Kleeberg U., Senf B. & Muenstedt K. 2014. User rate of complementary and alternative medicine (CAM) of patients visiting a counseling facility for CAM of a German comprehensive cancer center. Anticancer Res. 34: 943–948. PMID: 24511037Google Scholar

  • Hwang H.J., Lee H.J., Kim CH.J., Shim I. & Hahm D.H. 2008. Inhibitory effect of amygdalin on lipopolyccharide-inducible TNF-α and IL-1β mRNA expression and carrageenan-induced rats arthritis. J. Microbiol. Biotechnol. 18: 1641–1647. PMID: 18955812Google Scholar

  • Igarashi M. 1988. Kampo medicine in endocrinology, pp. 157–160. In: Hosoya E. & Yamamura Y. (eds), Recent Advances in the Pharmacology of Kampo (Japanese herbal) Medicines: Proceedings of the Satellite Meeting on Kampo (Japanese Herbal) Medicines of the 10th International Congress of Pharmacology, Auckland, August 19–21, Excerpta Medica, Tokyo, 470 pp. ISBN: 0444810641, 9780444810649Google Scholar

  • Kolesarova A., Capcarova M., Bakova Z., Galik B., Juracek M., Simko M. & Sirotkin A.V. 2011. The effect of bee pollen on secretion activity, markers of proliferation and apoptosis of porcine ovarian granulosa cells in vitro. J. Environ. Sci. Health. 46: 207–212. CrossrefWeb of ScienceGoogle Scholar

  • Kolesarova A., Capcarova M., Maruniakova N., Lukac N., Ciereszko R. & Sirotkin A. V. 2012. Resveratrol inhibits reproductive toxicity induced by Deoxynivalenol. J. Environ. Sci. Health. 47: 1329–134. CrossrefGoogle Scholar

  • Kolesarova A., Roychoudhury S., Slivkova J., Sirotkin A.V., Capcarova M. & Massanyi P. 2010. In vitro study on the effects of lead and mercury on porcine ovarian granulosa cells. J. Environ. Sci. Health. 45: 320–331. CrossrefGoogle Scholar

  • Londonkar R.L. & Nayaka H.B. 2013. Effect of ethanol extract of Portulaca oleracea L on ovulation and estrous cycle in female albino rats. J. Pharma. Res. 6: 431–436. CrossrefGoogle Scholar

  • Makarević J., Rutz J., Juengel E., Kaulfuss S., Reiter M., Tsaur I., Bartsch G., Haferkamp A. & Blaheta R.A. 2014. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyklin A and cdk2. PLoS One 9: e105590. CrossrefGoogle Scholar

  • Milazzo S., Lejeune S. & Ernst E. 2007. Laetrile for cancer: a systematic review of the clinical evidence. Support Care Cancer. 15: 583–595. CrossrefGoogle Scholar

  • Moertel C.G., Ames M.M., Kovach J.S., Moyer T.P., Rubin J.R. & Tinker J.H. 1981. A pharmacologic and toxicological study of amygdalin. J. Am. Med. Assoc. 245: 591–594. CrossrefGoogle Scholar

  • Medvedova M., Kolesarova A., Capcarova M., Labuda R., Sirotkin A.V., Kovacik J. & Bulla J. 2011. The effect of deoxynivalenol on the secretion activity, proliferation and apoptosis of porcine ovarian granulosa cells in vitro. J. Environ. Sci. Health. 46: 213–219. CrossrefGoogle Scholar

  • Nelson K.W. 1998. Alternative cancer treatments. Highlights in Oncology Practice 15 (4): 85–93.Google Scholar

  • Ranzenigo G., Caloni F., Cremonesi F., Aad P.Y. & Spicer L.J. 2008. Effects of Fusarium mycotoxins on steroid production by porcine granulosa cells. Anim. Reprod. Sci. 107: 115–130. CrossrefGoogle Scholar

  • Saalu L.C., Akunna G.G. & Ajayi J.O. 2013. Modulating role of bitter leaf on spermatogenic and steroidogenesis functions of the rat testis. Am. J. Biochem. Mol. Biol. 3: 314–321. CrossrefGoogle Scholar

  • Sakarkar D.N. & Deshmukh V.N. 2011. Ethnopharmacological review of traditional medicinal plants for anticancer activity. Int. J. PharmTech. Res. 3: 298–308.Google Scholar

  • Usuki S. 1987. Effects of Hachimijiogan, Tokishakuyakusan and Keishibukuryogan on progesterone secretions by corpus luteum. Am. J. Chin. Med. 15: 109. CrossrefGoogle Scholar

  • Usuki S. 1990. Effects of Tokishakuyakusan and Keishibukuryogan on steroidogenesis by rat preovulatory follicles in vivo. Am. J. Chin. Med. 18 (3–4): 149–156. CrossrefGoogle Scholar

  • Usuki S. 1991. Effects of Hachimijiogan, Tokishakuyakusan and Keishibukuryogan, Ninjinto and Unkeito on estrogen and progesterone secretion in preovulatory follicles incubated in vitro. Am. J. Chin. Med. 19: 65–71. CrossrefGoogle Scholar

  • Yan J., Tong S., Li J. & Lou J. 2006. Preparative isolation and purification of amygdalin from Prunus armeniaca L. with high recovery by high-speed countercurrent chromatography. J. Liq. Chrom. Rel. Tech. 29: 1271–1279. CrossrefGoogle Scholar

  • Yasui T., Matsuzaki T., Ushigoe K., Kuwahara A., Maegawa M., Furumoto H., Aono T. & Irahara M. 2003. Stimulatory effect of the herbal medicine Keishi-bukuryo-gan on a cytokine-induced neutrophil chemoattractant, in rat ovarian cell culture. Am. J. Reprod. Immunol. 50: 90–97. CrossrefGoogle Scholar

  • Yildirim F.A. & Askin M.A. 2010. Variability of amygdalin content in seeds of sweet or bitter apricot cultivars in Turkey. Afr. J. Biotech. 9 (39): 6522–6524. CrossrefGoogle Scholar

  • Zhou C., Qian L., Ma H., Yu X., Zhang Y., Qu W., Zhang X. & Xiam W. 2012. Enhancement of amygdalin activated with β-D glucosidase on HepG2 cells proliferation and apoptosis. Carbohydr. Polym. 90: 516–523. CrossrefGoogle Scholar

About the article

Received: 2016-11-03

Accepted: 2017-02-17

Published Online: 2017-04-28

Published in Print: 2017-04-25


Declaration of interest: The authors have reported that no competing interests exist.


Citation Information: Biologia, Volume 72, Issue 4, Pages 468–474, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0044.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eva Kovacikova, Anton Kovacik, Marek Halenar, Katarina Tokarova, Lubica Chrastinova, Lubomir Ondruska, Rastislav Jurcik, Eduard Kolesar, Jozef Valuch, and Adriana Kolesarova
Journal of Animal Physiology and Animal Nutrition, 2019, Volume 103, Number 2, Page 695
[2]
Eduard Kolesar, Eva Tvrda, Marek Halenar, Monika Schneidgenova, Lubica Chrastinova, Lubomir Ondruska, Rastislav Jurcik, Anton Kovacik, Eva Tusimova, Peter Massanyi, and Adriana Kolesarova
Toxicology Reports, 2018

Comments (0)

Please log in or register to comment.
Log in