Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 4

Issues

Germination strategies of two dominant Carex species in a swamp alder forest: implications for restoration

Josef Hulík
  • Corresponding author
  • Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16521 Praha, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Douda
  • Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16521 Praha, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/biolog-2017-0045

Abstract

Germination strategy is an essential mechanism that determines plant survival in previously established populations or newly colonised sites. Carex is a group of species that has shown difficulties to germinate experimentally and also many of them failed in order to use in restoration projects. Our aim was to determine whether Carex elata and C. elongata that dominate in vegetation of Central European swamps differ in their germination strategy. We conducted germination experiments with stratified and unstratified seeds of both species to determine: 1) if they are able to germinate fresh, 2) if they exhibit a cyclic dormancy pattern, and 3) if they will germinate from a seed bank. We demonstrate fresh seed germination and no evidence of cyclic dormancy in either species. Stratification did not enhance final germination but it did accelerate germination. Seed bank seeds of both species germinate sparsely. We demonstrate that these coexisting Carex species differ with respect to final germination. The higher germination percentages of the fresh seeds compared to buried and seed bank seeds of both species probably reflect adaptation to fluctuating water-level conditions. In summary, these findings support a strategy of fresh germination in a highly-variable environment. Our study indicates that both C. elata and C. elongata are suitable for restoration projects. Successful establishment and revegetation with C. elongata may result simply from sowing fresh seeds. In contrast, seed sowing, combined with vegetatively produced seedling transplants is essential for the successful restoration of C. elata.

Key words: burial experiment; fresh germination; sedges; seed bank; seed dormancy; stratification

References

  • Angevine M.W. & Chabot B.F. 1979. Seed germination syndromes in higher plants, pp. 188–206. In: Solbrig O.T., Jain S., Johnson G.B. & Raven P.H. (eds), Topics in Plant Population Biology, Columbia University Press, New York.Google Scholar

  • Baskin C.C. & Baskin J.M. 1988. Germination ecophysiology of herbaceous plant species in a temperate region. Am. J. Bot. 75: 286-305.CrossrefGoogle Scholar

  • Baskin C.C. & Baskin J.M. 1993. Seed germination ecophysiology of four summer annual mudflat species of Cyperaceae. Aquat. Bot. 45: 41-52.CrossrefGoogle Scholar

  • Baskin C.C. & Baskin J.M. 1998. Seeds. Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, 665 pp.Google Scholar

  • Baskin C.C, Chesson P.L. & Baskin J.M. 1993. Annual seed dormancy cycles in two desert winter annuals. J. Ecol. 81: 551-556.CrossrefGoogle Scholar

  • Baskin C.C, Chester W.E. & Baskin J.M. 1996. Effect of flooding on annual dormancy cycles in buried seeds of two wetland Carex species. Wetlands 16: 84–88.CrossrefGoogle Scholar

  • Brandel M. 2005. The effect of stratification temperatures on the level of dormancy in primary and secondary dormant seeds of two Carex species. Plant Ecol. 178: 163–169.CrossrefGoogle Scholar

  • Budelsky R.A. & Galatowitsch S.M. 1999. Effects of moisture, temperature, and time on seed germination of five wetland Carices: implications for restoration. Restor. Ecol. 7: 86–97.CrossrefGoogle Scholar

  • Cochrane A., Kelly A., Brown K. & Cunneen S. 2002. Relationships between seed germination requirements and ecophysiological characteristics aid the recovery of threatened native plant species in Western Australia. Ecol. Manage. Restor. 3: 47-60.CrossrefGoogle Scholar

  • Core Team R. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org.

  • Crawley M. J. 2012. The R book, 2nd edition. John Wiley & Sons, Inc., Chichester, 1076 pp.Google Scholar

  • Czerepko J., Boczon A., Pierzgalski E., Sokolowski A.W. & Wróbel M. 2007. Habitat diversity and spontaneous succession of forest wetlands in Bialowieza primeval forest, pp. 37–43. In: Okruszko T., Maltby E., Szatylowicz J., Miroslaw-Swiatek D. & Kotowski W. (eds), Wetlands: Modeling, Monitoring and Management, Taylor and Francis, London.Google Scholar

  • Douda J., Boublík K., Slezák M., Biurrun I., Nociar J., Havrdová A., Doudová J., Aćić S., Brisse H., Brunet J., Chytrý M., Claessens H., Csiky J., Didukh Y., Dimopoulos P., Dullinger S., FitzPatrick Ú., Guisan A., Horchler P.J., Hrivnák R., Jandt U., Kącki Z., Kevey B., Landucci F., Lecomte H., Lenoir J., Paal J., Paternoster D., Pauli H., Pielech R., Rodwell J.S., Roelandt B., Svenning J.C., Šibík J., Šilc U., Škvorc Ž., Tsiripidis I., Tzonev R.T., Wohlgemuth T. & Zimmermann N.E. 2016a. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl. Veg. Sci. 19: 147-163.CrossrefWeb of ScienceGoogle Scholar

  • Douda J., Čejková A., Douda K. & Kochánková J. 2009. Development of alder carr after the abandonment of wet grasslands during the last 70 years. Ann. For. Sci. 66: 1–13.CrossrefWeb of ScienceGoogle Scholar

  • Douda J., Doudová-Kochánková J., Boublik K. & Drašnarová A. 2012. Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis. Oecologia 169: 523-534.Web of ScienceGoogle Scholar

  • Douda J., Hulík J. & Doudová J. 2016b. Vegetative sprouting as an additional pathway for a seed size-number trade-off: a field-parameterised simulation approach. Community Ecol. 17: 205-215.CrossrefWeb of ScienceGoogle Scholar

  • Emrani S.N., Arzani A. & Saeidi G. 2013. Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. Afr. J. Biotechnol. 10: 12602-12613.Google Scholar

  • Eriksson O. & Fröborg H. 1996. “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can. J. Bot. 74: 1369-1374.CrossrefGoogle Scholar

  • Fernández-Pascual E., Jiménez-Alfaro B. & Díaz T.E. 2013. The temperature dimension of the seed germination niche in fen wetlands. Plant ecol. 214: 489-499.Web of ScienceCrossrefGoogle Scholar

  • Fojt W. & Harding M. 1995. Thirty years of change in the vegetation communities of valley mires in Suffolk, England. J. Appl. Ecol. 32: 561-577.CrossrefGoogle Scholar

  • Grime J.P., Mason G., Curtis A.V., Rodman J., Band S.R., Mowforth M.A.G., Neal A.M. & Shaw S. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69: 1017-1059.CrossrefGoogle Scholar

  • Gross N., Suding K.N., Lavorel S. & Roumet C. 2007. Complementarity as a mechanism of coexistence between functional groups of grasses. J. Ecol. 95: 1296–1305.CrossrefWeb of ScienceGoogle Scholar

  • Hegi G. 1980. Illustrierte Flora von Mitteleuropa, Band 2, Teil 1, Cyperaceae, Typhaceae incl. Sparganiaceae, Araceae, Lemnaceae, Juncaceae, 3rd edition. Parey, Berlin.Google Scholar

  • Hothorn T., Bretz F. & Westfall P. 2013. Package “multcomp”. http://cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf (accessed 18.8.2013).

  • Keddy P.A. 1992: Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3: 157–164.CrossrefGoogle Scholar

  • Keddy P.A., Wisheu I.C., Shippley B. & Gaudet C. 1989. Seed banks and vegetation management for conservation: toward predictive community ecology, pp. 347–365. In: Leck M.A., Parker V.T. & Simpson R.L. (eds), Ecology of Soil Seed Banks. Academic Press, San Diego.Google Scholar

  • Kettenring K.M. & Galatowitsch S.M. 2007. Temperature requirements for dormancy break and seed germination vary greatly among 14 wetland Carex species. Aquat. Bot. 87: 209-220.CrossrefGoogle Scholar

  • Kettenring K.M. & Galatowitsch S.M. 2011a. Seed rain of restored and natural prairie wetlands. Wetlands 31: 283–294.Web of ScienceCrossrefGoogle Scholar

  • Kettenring K.M. & Galatowitsch S.M. 2011b. Carex seedling emergence in restored and natural prairie wetlands. Wetlands 31: 273-281.CrossrefGoogle Scholar

  • Leck M.A. & Schütz W. 2005. Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspect. Plant Ecol. Evol. Syst. 7: 95-133.CrossrefGoogle Scholar

  • Mayfield M.M. & Levine J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13: 1085-1093.Web of ScienceCrossrefGoogle Scholar

  • McCullagh P. & Nelder J. A. 1989.Generalized Linear Models, 2nd edition. Chapman & Hall, London, 532 pp.Google Scholar

  • Narbona E., Delgado A., Encina F., Miguez M. & Buide M.L. 2013. Seed germination and seedling establishment of the rare Carex helodes Link depend on the proximity to water. Aquat. Bot. 110: 55-60.CrossrefGoogle Scholar

  • Schütz W. 1997a. Are germination strategies important for the ability of cespitose wetland sedges (Carex) to grow in forests? Can. J. Bot. 75: 1692-1699.Google Scholar

  • Schütz W. 1997b. Primary dormancy and annual dormancy cycles in seeds of six temperate wetland sedges. Aquat. Bot. 59: 75— 85.CrossrefGoogle Scholar

  • Schütz W. 2000. Ecology of seed dormancy and germination in sedges (Carex). Perspect. Plant Ecol. Evol. Syst. 3: 67-89.CrossrefGoogle Scholar

  • Schütz W. & Rave G. 1999. The effect of cold stratification and light on the seed germination of temperate sedges (Carex) from various habitats and implications for regenerative strategies. Plant Ecol. 144: 215-230.CrossrefGoogle Scholar

  • Schütz W. & Rave G. 2003. Variation in seed dormancy of the wetland sedge, Carex elongata, between populations and individuals in two consecutive years. Seed Sci. Res. 13: 315–322.CrossrefGoogle Scholar

  • Silvertown J. 2004. Plant coexistence and the niche. Trends Ecol. Evol. 19: 605-611.CrossrefGoogle Scholar

  • Thompson K., Bakker J.P. & Bekker R.M. 1997. The soil seed banks of North West Europe: methodology, density and longevity. Cambridge university press, Cambridge, 288 pp.Google Scholar

  • Tolasz R., Miková T. & Valeriánová A. 2007. Climate atlas of Czechia. ČHMÚ, Praha & UP, Olomouc.Google Scholar

  • Van der Valk A.G., Bremholm T.L. & Gordon E. 1999. The restoration of sedge meadows: seed viability, seed germination requirements, and seedling growth of Carex species. Wetlands 19: 756-764.CrossrefGoogle Scholar

  • Van der Valk A.G. & Pederson R.L. 1989. Seed banks and the management and restoration of natural vegetation, pp. 329— 346. In: Leck M.A., Parker V.T. & Simpson R.L. (eds), Ecology of Soil Seed Banks, Academic Press, San Diego.Google Scholar

  • Van Kleunen M., Fischer M. & Schmid B. 2002. Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evolution 56: 2168-2177.CrossrefGoogle Scholar

  • Venables W.N. & Ripley B.D. 1998. Modern Applied Statistics with S-Plus. Springer-Verlag, New York, 447 pp.Google Scholar

About the article

Received: 2016-09-12

Accepted: 2017-01-09

Published Online: 2017-04-28

Published in Print: 2017-04-25


Citation Information: Biologia, Volume 72, Issue 4, Pages 370–377, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0045.

Export Citation

© 2017 Institute of Botany, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jan Douda, Jana Doudová, Josef Hulík, Alena Havrdová, and Karel Boublík
Ecology, 2018

Comments (0)

Please log in or register to comment.
Log in