Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia




More options …
Volume 72, Issue 4

Issues

Effects of beaver dams on the zooplankton assemblages in four temperate lowland streams (NW Poland)

Robert Czerniawski
  • Department of General Zoology, Faculty of Biology, University of Szczecin, ul. Felczaka 3c, 71-412 Szczecin, Poland
  • Centre of Molecular Biology and Biotechnology, University of Szczecin, ul. Wąska 13, 70-415 Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Łukasz Sługocki
  • Department of General Zoology, Faculty of Biology, University of Szczecin, ul. Felczaka 3c, 71-412 Szczecin, Poland
  • Centre of Molecular Biology and Biotechnology, University of Szczecin, ul. Wąska 13, 70-415 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monika Kowalska-Góralska
  • Department of Hydrobiology and Aquaculture, Wrocław University of Environmental and Life Sciences, ul. Chełmońskiego 38c, 51-630 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/biolog-2017-0047

Abstract

Beaver ponds favour lentic species over the original lotic animals. The typical lentic animals are zooplankton, which can be good predictors of hydrological changes in streams caused by beaver activity. We analysed the effects of beaver dams on the zooplankton communities in small lowland streams in stream-beaver pond-stream systems. All spatial changes in the composition of zooplankton reflected the effects of physical changes introduced by the beaver dams. The rapid increase in the density of the aforementioned taxa was possible because the features typical of stagnant water reservoirs are present in beaver ponds. The number of taxa and the abundance and biodiversity of zooplankton, especially planktonic rotifers, were higher in the dam and downstream sites than in the upstream sites. Therefore, the impact of beaver ponds on the composition of zooplankton in streams below the dams is considerable, and there is an increase in the organic matter downstream, which leads to trophic changes in the stream.

Key words: beaver dams; zooplankton; stream ecology; ecohydrology

References

  • Akopian M., Garnier J. & Pourriot R. 1999. A large reservoir as a source of zooplankton for the river: structure of the populations and influence of fish predation. J. Plankton Res. 21: 285–297. DOI: 10.1093/plankt/21.2.285CrossrefGoogle Scholar

  • Allan J.D. & Castillo M.M. 2007. Stream Ecology: Structure and Function of Running Waters. Springer Science & Business Media, Dordrecht, The Netherlands, 435 pp. ISBN: 978-1-4020-5583-6Google Scholar

  • Anderson C.B., Pastur G.M., Lencinas M.V., Wallem P.K., Moorman M.C. & Rosemond A.D. 2009. Do introduced North American beavers Castor canadensis engineer differently in southern South America? An overview with implications for restoration. Mammal Rev. 39 (1): 33—52. DOI: 10.1111/j. 1365-2907.2008.00136.xCrossrefGoogle Scholar

  • Armitage P.D. & Capper M.H. 1976. The numbers, biomass and transport downstream of micro-crustaceans and Hydra from Cow Green Reservoir (Upper Teesdale). Freshwater Biol. 6: 425–432. DOI: 10.1111/j.1365-2427.1976.tb01630.xCrossrefGoogle Scholar

  • Arndt E. & Domdei J. 2011. Influence of beaver ponds on the macroinvertebrate benthic community in lowland brooks. Pol. J. Ecol. 59: 799–811.Google Scholar

  • Basu B.K. & Pick F.R. 1997. Phytoplankton and zooplankton development in a lowland, temperate river. Plankton Res. 19: 237–253. DOI: 10.1093/plankt/19.2.237CrossrefGoogle Scholar

  • Chang K.H., Doi H., Imai H., Gunji F. & Nakano S.I. 2008. Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory. Limnology 9: 125–133. DOI: 10.1007/s10201-008-0244-6CrossrefGoogle Scholar

  • Czerniawski R. 2012. Spatial pattern of potamozooplankton community of the slowly flowing fishless stream in relation to abiotic and biotic factors. Pol. J. Ecol. 60: 323-338.Google Scholar

  • Czerniawski R. 2013. Zooplankton community changes between forest and meadow sections in small headwater streams, NW Poland. Biologia 68 (3): 448-458. DOI: 10.2478/s11756-013-0170-xCrossrefGoogle Scholar

  • Czerniawski R. & Domagała J. 2010. Similarities in zooplankton community between River Drawa and its two tributaries (Polish part of River Odra). Hydrobiologia 638: 137-149. DOI: 10.1007/s10750-009-0036-yCrossrefGoogle Scholar

  • Czerniawski R. & Domagała J. 2013. Reduction of zooplankton communities in small lake outlets in relation to abiotic and biotic factors. Oceanol. Hydrobiol. St. 42: 123-131. DOI: 10.2478/s13545-013-0065-zCrossrefGoogle Scholar

  • Czerniawski R. & Domagała J. 2014. Small dams profoundly alter the spatial and temporal composition of zooplankton communities in running waters. Int. Rev. Hydrobiol. 99: 300—311. DOI: 10.1002/iroh.201301674CrossrefGoogle Scholar

  • Czerniawski R. & Pilecka-Rapacz M. 2011. Summer zooplankton in small rivers in relation to selected conditions. Cent. Eur. J. Biol. 6: 659-674. DOI: 10.2478/s11535-011-0024-xCrossrefGoogle Scholar

  • Czerniawski R., Sługocki Ł. & Kowalska-Góralska M. 2016. Diurnal changes of zooplankton community reduction rate at lake outlets and related environmental factors. PLoS One 11: e0158837. DOI: 10.1371/journal.pone.0158837CrossrefGoogle Scholar

  • Doi H., Chang K.H., Ando T., Imai H., Nakano S.I., Kajimoto Α. & Katano I. 2008. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure. Oecologia 156: 363-371. DOI: 10.1007/s00442-008-0988-zCrossrefGoogle Scholar

  • Dussart B. & Defaye D. 2006. World Directory of Crustacea Copepoda of Inland Waters. II Cyclopiformes. Backhuys Publishers, Leiden, 354 pp. ISBN: 9057821753, 9789057821752Google Scholar

  • Ejsmont-Karabin J. 2008. Vertical microzonation of psammon rotifers (Rotifera) in the psammolittoral habitat of an eutrophic lake. Pol. J. Ecol. 56: 351-357.Google Scholar

  • Ejsmont-Karabin J. & Kruk M. 1998. Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia 387/388: 241-249. DOI: 10.1023/A: 1017081407452CrossrefGoogle Scholar

  • Ejsmont-Karabin J., Wegleńska T. & Wisńiewski R.J. 1993. The effect of water flow rate on zooplankton and its role in phosphorus cycling in small impoundments. Water Sci. Technol. 28 (6): 35–43.Google Scholar

  • Elmeros M., Madsen A.B. & Berthelsen J.P. 2003. Monitoring of reintroduced beavers (Castor fiber) in Denmark. Lutra 46 (2): 153-162.Google Scholar

  • Estlander S. Nurminen L., Olin M., Vinni M. & Horppila J. 2009. Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia 620: 109-120. DOI: 10.1007/s10750-008-9621-8CrossrefGoogle Scholar

  • Fontaneto D., Melone G. & Ricci C. 2005. Connectivity and nestedness of the meta-community structure of moss dwelling bdelloid rotifers along a stream. Hydrobiologia 542: 131—136. DOI: 10.1007/1-4020-4111-X_16CrossrefGoogle Scholar

  • Fuller M.R. & Peckarsky B.L. 2011. Ecosystem engineering by beavers affects mayfly life histories. Freshwater Biol. 56: 969— 979. DOI: 10.1111/j. 1365-2427.2010.02548.xCrossrefGoogle Scholar

  • Gliwicz Z.M. 1986. A lunar cycle in zooplankton. Ecology 67: 883-897. DOI: 10.2307/1939811CrossrefGoogle Scholar

  • Gołdyn R. & Kowalczewska-Madura K. 2008. Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland. J. Plankton Res. 30: 33-42. DOI: 10.1093/plankt/fbm086CrossrefGoogle Scholar

  • Hanelore M. 2013. The process of self-purification in the rivers, pp. 409-416. DOI: 10.5593/SGEM2013/BC3/S12.052. In: 13th SGEM GeoConference on Water Resources. Forest, Marine And Ocean Ecosystems, www.sgem.org, SGEM2013. Conference Proceedings, 478 pp. ISBN: 978-619-7105-02-5Crossref

  • Hilbricht-Ilkowska A. 1999. Shallow lakes in lowland river systems: Role in transport and transformations of nutrients and in biological diversity. Hydrobiologia 408: 349—358. DOI: 10.1007/978-94-017-2986-4_39CrossrefGoogle Scholar

  • Jeppesen E., Nőges P., Davidson T.A., Haberman J., Nőges T., Blank Κ., Lauridsen T.L., Søndergaard M., Sayer C., Laugaste R., Johansson L.S., Bjerring R. & Amsinck S.L. 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279-297. DOI: 10.1007/s10750-011-0831-0CrossrefGoogle Scholar

  • Kamarainen A.M., Rowland F.E., Biggs R. & Carpenter S.R. 2008. Zooplankton and the total phosphorus-chlorophyll a relationship: hierarchical Bayesian analysis of measurement error. Can. J. Fish. Aquat. Sci. 65: 2644-2655. DOI: 10.1139/F08-161CrossrefGoogle Scholar

  • Kemp P.S., Worthington T.A., Langford T.E., Tree A.R. & Gaywood M.J. 2012. Qualitative and quantitative effects of reintroduced beavers on stream fish. Fish and Fish. 13 (2): 158— 181. DOI: 10.1111/j. 1467-2979.2011.00421.xCrossrefGoogle Scholar

  • Kobayashi T., Shiel R.J., Gibbs P. & Dixon P.I. 1998. Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers. Hydrobiologia 377: 133-145. DOI: 10.1023/A: 1003240511366CrossrefGoogle Scholar

  • Krylov A.V. 2002. Activity of beavers as an ecological factor affecting the zooplankton of small rivers. Rus. J. Ecol. 33: 349— 356. DOI: 10.1023/A:1020221911648CrossrefGoogle Scholar

  • Krylov A.V. 2008. Impact of the activities of beaver on the zooplankton of a piedmont river (Mongolia). Inland Water Biol. 1: 73-75. DOI: 10.1007/s12212-008-1011-4CrossrefGoogle Scholar

  • Kuczyńska-Kippen N.M. & Nagengast B. 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. DOI: 10.1007/s10750-005-0867-0CrossrefGoogle Scholar

  • Lair N. 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res. Appl. 22: 567-593. DOI: 10.1002/rra.923CrossrefGoogle Scholar

  • Lévesque S., Beisner Β.Ε. & Peres-Neto P.R. 2010. Meso-scale distributions of lake zooplankton reveal spatially and temporally varying trophic cascades. J. Plankton Res. 32: 1369—1384. DOI: 10.3410/f.5118957.5053055CrossrefGoogle Scholar

  • Lindstrom J.W. & Hubert W.A. 2004. Ice processes affect habitat use and movements of adult cutthroat trout and brook trout in a Wyoming foothills stream. N. Am. J. Fish. Manage. 24: 1341-1352. DOI: 10.1577/M03-223.1CrossrefGoogle Scholar

  • McDowell D.M. & Naiman R.J. 1986. Structure and function of a benthic invertebrate stream community as influenced by beaver (Castor canadensis). Oecologia 68: 481—489. DOI: 10.1007/BF00378759CrossrefGoogle Scholar

  • Nielsen D.L., Podnar K., Watts R.J. & Wilson A.L. 2013. Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia 708: 81-96. DOI: 10.1007/s10750-011-0989-5CrossrefGoogle Scholar

  • Nogrady T., Wallace R.L. & Snell T.W. 1993. Rotifera, pp. 1-142. In: Dumont H.J. (eds), Biology, Ecology and Systematics, Vol. 1, Rotifera. Guides to the Identification of the microinvertebrates of the Continental Waters of the World, SPB Academic Publishers, The Hague, 142 pp. ISBN: 9051030800, 9789051030808Google Scholar

  • Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E. & Wagner H. 2013. Package 'vegan'. Community Ecology Package, Version. 2(9). https://cran.r-project.org/web/packages/vegan/vegan.pdf

  • Phillips E.C. 1995. Comparison of the zooplankton of a lake and stream in Northwest Arkansas. J. Freshwater Ecol. 10: 337— 341. DOI: 10.1080/02705060.1995.9663456CrossrefGoogle Scholar

  • Radwan S. 2004. Rotifers (Rotifera). Fauna Slodkowodna Polski [The Freshwater Fauna of Poland] 32. Uniwersytet Łódzki, Łódz, 447 pp.Google Scholar

  • Richardson W.B. 1992. Microcrustacea in flowing water: experimental analysis of washout times and a field test. Freshwater Biol. 28: 217-230. DOI: 10.1111/j.1365-2427.1992.tb00578.xCrossrefGoogle Scholar

  • Rosell F., Bozser O., Collen P. & Parker H. 2005. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal Rev. 35 (3-4): 248-276. DOI: 10.1111/j. 1365-2907.2005.00067.xCrossrefGoogle Scholar

  • Rybak J.I. & Błędzki L.A. 2010. Słodkowodne skorupiaki planktonowe. Klucz do oznaczania gatunków [Freshwater planktonic Crustacea. Key for species identification]. Wydawnictwo Uniwersytetu Warszawskiego, Warszaw, 366 pp. ISBN: 978-83-235-0738-3Google Scholar

  • Swales S. & Levings C.D. 1989. Role of off-channel ponds in the life cycle of coho salmon (Oncorhynchus kisutch) and other juvenile salmonids in the Coldwater River, British Columbia. Can. J. Fish. Aquat. Sci. 46: 232-242. DOI: 10.1139/f89-032CrossrefGoogle Scholar

  • Taylor B.E. 1980. Size-selective predation on zooplankton, pp. 377-388. In: Kerfoot W.C. (eds), Evolution and Ecology of Zooplankton Communities, University Press New England: Hanover, 793 pp. ISBN: 0874511801, 9780874511802Google Scholar

  • Thorp J.H. & Casper A.F. 2003. Importance of biotic interactions in large rivers: an experiment with planktivorous fish, dreissenid mussels and zooplankton in the St. Lawrence River. Riv. Res. Appl. 19: 265-279. DOI: 10.1002/rra.703CrossrefGoogle Scholar

  • Thorp J.H., Thoms M.C. & Delong M.D. 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. Riv. Res. Appl. 22: 123—147. DOI: 10.1002/rra.901CrossrefGoogle Scholar

  • Vranovsky M. 1995. The effect of current velocity upon the biomass of zooplankton in the River Danube side arms. Biologia 50: 461-464.Google Scholar

  • Walks D.J. & Cyr H. 2004. Movement of plankton through lake stream systems. Freshwater Biol. 49: 745—759. DOI: 10.1111/j. 1365-2427.2004.01220.xCrossrefGoogle Scholar

  • Zhou S., Tang T., Wu N., Fu X. & Cai Q. 2010. Impact of small dam on riverine zooplankton. Int. Rev. Hydrobiol. 93: 297— 311. DOI: 10.1002/iroh.200711038CrossrefGoogle Scholar

About the article

Received: 2016-11-11

Accepted: 2017-01-14

Published Online: 2017-04-28

Published in Print: 2017-04-25


Citation Information: Biologia, Volume 72, Issue 4, Pages 417–430, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0047.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Robert Czerniawski and Łukasz Sługocki
Ecohydrology, 2018, Page e1963

Comments (0)

Please log in or register to comment.
Log in