Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biologia

12 Issues per year


IMPACT FACTOR 2016: 0.759
5-year IMPACT FACTOR: 0.803

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.300
Source Normalized Impact per Paper (SNIP) 2016: 0.476

Online
ISSN
1336-9563
See all formats and pricing
More options …
Volume 72, Issue 4

Issues

Communities of oribatid mites (Acari: Oribatida) of naturally regenerating and salvage-logged montane spruce forests of Šumava Mountains

Petra Kokořovǎ
  • Institute of Soil Biology, Biology Centre v.v.i, Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josef Starý
  • Institute of Soil Biology, Biology Centre v.v.i, Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/biolog-2017-0050

Abstract

The main aim of this study was to describe and compare communities of oribatid mites of selected areas in montane spruce forests near Březník in the Šumava National Park, where different management strategies were used after the spruce dieback caused by massive bark beetle gradation more than 15 years ago. Naturally regenerating and salvage-logged areas were compared. Significant differences were found in the oribatid mite community composition between differently managed areas. The oribatid mite community in naturally regenerating areas was in better shape and its abundance and species composition was similar to the community of a control area in a mature and healthy spruce forest.

This article offers supplementary material which is provided at the end of the article.

Key words: oribatid mites; spruce forest; community; bark beetle gradation; forest management

References

  • Balogh J. & Mahunka S. 1983. Primitive Oribatids of the Palaearctic Region. Series: The Soil Mites of the World. Akadémia Kiadó, Budapest, 372 pp. ISBN-10: 0444996540Google Scholar

  • Bryndová M. 2013. Vliv kalamitní těžby na populaci želvušek (Tardigrada) v horských smrčinách NP Šumava [Effect of salvage logging on soil tardigrade population in mountain spruce forest of the Šumava Nation Park after 16 years from treatment]. Unpublished Mgr. thesis, Faculty of Science, University of South Bohemia, 43 pp.Google Scholar

  • Caruso T., Pigino G., Bernini F., Bargagli R. & Migliorini M. 2007. The Berger-Parker index as an effective tool for monitoring the biodiversity of disturbed soils: a case study on Mediterranean oribatid (Acari: Oribatida) assemblages. Biodivers. Conserv. 16: 3277-3285. DOI: 10.1007/sl0531-006-9137-3CrossrefGoogle Scholar

  • Coleman D.C., Crossley D.A. jr. & Hendrix P.F. 2004. Foundamentals of Soil Ecology. Academic Press Inc., 2nd edn, San Diego, 408 pp. ISBN: 9780121797263Google Scholar

  • Dahlberg A., Schimmel J., Taylor A.F.S. & Johannesson H. 2001. Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biol. Conserv. 100: 151-161. DOI: 10.1016/S0006-3207(00)00230-5CrossrefGoogle Scholar

  • Domes K., Scheu S. & Maraun M. 2007. Resources and sex: soil re-colonization by sexual and parthenogenetic oribatid species. Pedobiologia 51: 1-11. DOI: 10.1016/j.pedobi.2006. 11.001CrossrefGoogle Scholar

  • Farská J., Prejzková K. & Rusek J. 2014a. Management intensity affects traits of soil microarthropod community in montane spruce forest. Appl. Soil Ecol. 75: 71–79. DOI: 10.1016/j.apsoil.2013.11.003CrossrefWeb of ScienceGoogle Scholar

  • Farská J., Prejzková K., Starý J. & Rusek J. 2014b. Soil microarthropods in non-intervention montane spruce forest regenerating after bark-beetle outbreak. Ecol. Res. 29: 1087– 1096. DOI: 10.1007/sll284-014-1197-3CrossrefWeb of ScienceGoogle Scholar

  • Giljarov M.S. & Krivoluckij D.A. (eds). 1975. Opredelitel obitayushchikh v pochve kleshcheǐ. Sarcoptiformes. Nauka, Moscow, 492 pp.Google Scholar

  • Griffin J.M., Turner M.G. & Simard M. 2011. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Forest Ecol. Manag. 261: 1077-1089. DOI: 10.1016/j.foreco.2010.12.031CrossrefGoogle Scholar

  • Hais M. & Kučera T. 2008. Surface temperature change of spruce forest as a result of bark beetle attack: Remote sensing and GIS approach. Eur. J. For. Res. 127: 327-336. DOI: 10.1007/sl0342-008-0208-8Web of ScienceCrossrefGoogle Scholar

  • Hamilton W.D. 1980. Sex versus non-sex versus parasite. Oikos 35: 282-290. DOI: 10.2307/3544435CrossrefGoogle Scholar

  • Hartenstein R.C. 1962. Soil Oribatei. Feeding specifity among forest soil Oribatei (Acarina). Ann. Entomol. Soc. Am. 55: 202-206. DOI: 10.1093/aesa/55.2.202CrossrefGoogle Scholar

  • Jonášová M. & Prach K. 2004. Central-European mountain spruce (Piceo abies (L.) Karst.) forests: regeneration of tree species after a bark-beetle outbreak. Ecol. Eng. 23: 15–27. DOI: 10.1016/j.ecoleng.2004.06.010CrossrefGoogle Scholar

  • Jonášová M. & Prach K. 2008. The influence of bark beetle outbreak vs. salvage logging onground layer vegetation in Central European mountain spruce forests. Biol. Conserv. 141: 1525-1535. DOI: 10.1016/j.biocon.2008.03.013CrossrefGoogle Scholar

  • Krausová M. 2011. Odhad dostupnosti živin v půdě asanovaných a přirozeně se vyvíjejících porostů po kůrovcové kalamitě na území NP Šumava [Estimate of available nutrients in forest soil after bark beetle outbreak of stands after salvage logging and of stands left without intervention in the Šumava National park]. Unpublished Bc. thesis, Faculty of Science, University of South Bohemia, 41 pp.Google Scholar

  • Kunst M. 1971. Nadkohorta pancířníci – Oribatei [Supercohort moss mites – Oribatei], pp. 531–580. In: Daniel M. & Černý V. (eds), Klíč zvířeny ČSSR, díl IV. Želvušky, jazyčnatky, klepítkatci: sekáči, pavouci, štírci, roztoči, Československá akademie věd, Praha, 603 pp.Google Scholar

  • Lindberg N. & Bengtsson J. 2006. Recovery of forest soil fauna diversity and composition after repeated summer droughts. Oikos 114: 494-506. DOI: 10.1111/j.2006.0030-1299.14396.xCrossrefGoogle Scholar

  • Lindenmayer D.B. & Noss R.F. 2006. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20: 949-958. DOI: 10.1111/j.1523-1739.2006.00497.xCrossrefGoogle Scholar

  • Lóšková J., Luptáčik P., Miklisová D. & Kováč L. 2013. The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol. 55: 131-138. DOI: 10.1016/j.ejsobi.2013.01.001CrossrefWeb of ScienceGoogle Scholar

  • Luptáčik P., Miklisová D. & Kováč L. 2012. Diversity and community structure of soil Oribatida (Acari) in an arable field with alluvial soils. Eur. J. Soil Biol. 50: 97-105. DOI: 10.1016/j.ejsobi.2011.12.008CrossrefWeb of ScienceGoogle Scholar

  • Luxton M. 1972. Studies on the oribatid mites of a Danish beech wood soil, I. Nutritional biology. Pedobiologia 12: 434–463.Google Scholar

  • Maraun M., Fronczek S., Marian F., Sandmann D. & Scheu S. 2013. More sex at higher altitudes: Changes in the frequency of parthenogenesis in oribatid mites in tropical montane rain forests. Pedobiologia 56: 185–195. DOI: 10.1016/j.pedobi.2013.07.001CrossrefWeb of ScienceGoogle Scholar

  • Maraun M., Salamon J.A., Schneider K., Schaefer M. & Scheu S. 2003. Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biol. Biochem. 35: 1387-1394. DOI: 1016/S0038-0717(03)00218-9Google Scholar

  • Marshall V.G. 1972. Comparison of two methods of estimating efficiency of funnel extractors for soil microarthropods. Soil Biol. Biochem. 4: 417-426. DOI: 10.1016/0038-0717(72)90056-9CrossrefGoogle Scholar

  • Marshall V.G. 2000. Impact of forest harvesting on biological processes in northern forest soil. Forest Ecol. Manag. 133: 43–60. DOI: 10.1016/S0378-1127(99)00297-2CrossrefGoogle Scholar

  • Mumladze L., Murvanidze M., Maraun M. & Salakaia M. 2015. Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus). Exp. Appl. Acarol. 66: 41–51. DOI: 10.1007/sl0493-015-9893-4CrossrefWeb of ScienceGoogle Scholar

  • Murvanidze M., Mumladze M., Arabuli T. & Kvavadze E. 2013. Oribatid mite colonization of sand and manganese tailing sites. Acarologia 53: 203-215. DOI: 10.1051/acarologia/20132089Web of ScienceCrossrefGoogle Scholar

  • Niedbala W. 1980. Mechowce – roztocze ekosystémów ladowych [Oribatida – Mites of Terrestrial Ecosystems]. PWN, Warsava, 255 pp.Google Scholar

  • Norton R.A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of Astigmata, pp. 99–135. In: Houck M.A. (ed.), Mites: Ecological and Evolutionary Analyses of Life-History Patterns, Chapman and Hall, New York, 357 pp. ISBN: 978-1-4615-2389-5Google Scholar

  • Norton R.A. & Behan-Pelletier V.M. 2009. Oribatida, pp. 430-564. In: Krantz G.W. & Walter D.E. (eds), A Manual of Acarology, 3rd ed. Texas Tech University Press, Lubbock, Texas, 807 pp. ISBN: 978-0-89672-620-8Google Scholar

  • Ojala R. & Huhta V. 2001. Dispersal of microarthropods in forest soil. Pedobiologia 45: 443-450. DOI: 10.1078/0031-4056-00098CrossrefGoogle Scholar

  • Pavlas J. 2014. Vliv disturbance lesa na teplotu a vlhkost půdy [Influence of the forest disturbances on the temperature and humidity of soil]. Unpublished Mgr. thesis, Faculty of Science, University of South Bohemia, 60 pp.Google Scholar

  • Seniczak S. & Stefaniak O. 1978. The microflora of the alimentary canal of Oppia nitens (Acarina, Oribatei). Pedobiologia 18: 110-119.Google Scholar

  • Schuster R. 1956. Der Anteil der Oribatiden an den Zersetzungsvorgängen im Boden. Z. Morphol. Ökol. Tiere 45 (1): 1-33. DOI: 10.1007/BF00699814CrossrefGoogle Scholar

  • Shannon C.E. & Weaver W. 1949. The mathematical theory of communication. Illinois University Press, Urbana USA, 282 pp. ISBN: 0-252-72546-8Google Scholar

  • Siepel H. 1996. The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites. Biodivers. Lett. 3: 26-34. DOI: 10.2307/2999707CrossrefGoogle Scholar

  • Siira-Pietikäinen A., Penttinen R. & Huhta V. 2008. Oribatid mites (Acari: Oribatida) in boreal forest floor and decaying wood. Pedobiologia 52: 111-118. DOI: 10.1016/j.pedobi. 2008.05.001Web of ScienceCrossrefGoogle Scholar

  • Skuhravý V. 2002. Lýkožrout smrkový v Bavorském lese a na Šumavě [Eight-toothed spruce bark beetle in the Bavarian forest and Šumava Mts]. Živa 5: 220-222.Google Scholar

  • Starý J. 1990. Ekologie pancířníků (Acari: Oribatida) v sukcesní řadě půd [Ecology of oribatid mites (Acari: Oribatida) during succession in brown soils]. Unpublished PhD. thesis, Institute of Soil Biology, ASCR, České Budějovice, 179 pp.Google Scholar

  • Starý J. & Matějka K. 2008. Pancířníci (Acari: Oribatida) vybraných lokalit horských lesů na Šumavě. Průběžná zpráva z řešení projektu 2B06012 Management biodiversity v Krkonoších a na Šumavě v roce 2007 [Oribatid mites (Acari: Oribatida) of selected localities at montain forests on the Šumava Mts.. Report of the project 2B06012: Biodiversity management in the Krkonoše Mts and the Šumava Mts in 2007], http://www.infodatasys.cz/biodivkrsu/rep2007_Oribatida.pdf

  • Strenzke K. 1952. Untersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands. Zoologica 37 (104), 172 pp.Google Scholar

  • Svoboda M., Janda P., Nagel T.A., Fraver S., Rejzek J. & Bače R. 2012. Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian forest, Czech Republic. J. Veg. Sci. 23: 86-97. DOI: 10.1111/j.1654-1103.2011.01329.xCrossrefGoogle Scholar

  • Šantrůcková H., Vrba J., Křenová Z., Svoboda M., Benčoková A., Edwards M., Fuchs R., Hais M., Hruška J., Kopáček J., Matějka K. & Rusek J. 2010. Co vyprávějí šumavské smrčiny [What can the spruce forests of Šumava Mts. narrate]. Správa NP a CHKO Šumava, Vimperk, 153 pp.Google Scholar

  • Šmilauer P. & Lepš J. 2014. Multivariate analysis of ecological data using Canoco 5. 2nd edn. Cambridge University Press, 362 pp. ISBN: 978-1-107-69440-8Google Scholar

  • Velíšek L. 2014. Společenstva mnohonožek a stonožek přirozeně se vyvíjejících a asanovaných horských smrčin Šumavy [Communities of millipedes and centipedes in the naturally disturbed and rehabilitated mountain spruce forests of the Šumava Mts]. Unpublished Mgr. thesis, Faculty of Science, University of South Bohemia, 71 pp.Google Scholar

  • Weigmann G. 2006. Die Tierwelt Deutschlands, Teil 76: Hornmilben (Oribatida). Goecke and Evers, Keltern, 520 pp. ISBN: 978-3-937783-18-5Google Scholar

About the article

Received: 2016-11-01

Accepted: 2017-01-21

Published Online: 2017-04-28

Published in Print: 2017-04-25


Citation Information: Biologia, Volume 72, Issue 4, Pages 445–451, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0050.

Export Citation

© 2017 Institute of Zoology, Slovak Academy of Sciences. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in