Jump to ContentJump to Main Navigation
Show Summary Details
More options …


12 Issues per year

See all formats and pricing
More options …
Volume 72, Issue 5


Functional studies of AtACR2 gene putatively involved in accumulation, reduction and/or sequestration of arsenic species in plants

Noor Nahar
  • Systems Biology Research Center, School of Bioscience, University of Skövde, P.O. Box 408, SE-541 28 Skövde Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aminur Rahman
  • Corresponding author
  • Systems Biology Research Center, School of Bioscience, University of Skövde, P.O. Box 408, SE-541 28 Skövde Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sibdas Ghosh / Neelu Nawani
  • Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune – 411033, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abul Mandal
  • Systems Biology Research Center, School of Bioscience, University of Skövde, P.O. Box 408, SE-541 28 Skövde Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-30 | DOI: https://doi.org/10.1515/biolog-2017-0062


Food-based exposure to arsenic is a human carcinogen and can severely impact human health resulting in many cancerous diseases and various neurological and vascular disorders. This project is a part of our attempts to develop new varieties of crops for avoiding arsenic contaminated foods. For this purpose, we have previously identified four key genes, and molecular functions of two of these, AtACR2 and AtPCSl, have been studied based on both in silico and in vivo experiments. In the present study, a T-DNA tagged mutant, (SALK_143282C with mutation in AtACR2 gene) of Arabidopsis thaliana was studied for further verification of the function of AtACR2 gene. Semi-quantitative RT-PCR analyses revealed that this mutant exhibits a significantly reduced expression of the AtACR2 gene. When exposed to 100 μM of arsenate (AsV) for three weeks, the mutant plants accumulated arsenic approximately three times higher (778 μg/g d. wt.) than that observed in the control plants (235 μg/g d. wt.). In contrast, when the plants were exposed to 100 μM of arsenite (AsIII), no significant difference in arsenic accumulation was observed between the control and the mutant plants (535 μg/g d. wt. and 498 μg/g d. wt., respectively). Also, when arsenate and arsenite was measured separately either in shoots or roots, significant differences in accumulation of these substances were observed between the mutant and the control plants. These results suggest that AtACR2 gene is involved not only in accumulation of arsenic in plants, but also in conversion of arsenate to arsenite inside the plant cells.

Key words: Arabidopsis thaliana; arsenate reductase 2 gene; arsenic accumulation; arsenic speciation; IC-ICP-DRC-MS; RT-PCR


  • Ali W., Isayenkov S.V., Zhao F.J. & Maathuis F.J. 2009. Arsenite transport in plants. Cell. Mol. Life Sci. 66: 2329–2339.Web of ScienceGoogle Scholar

  • Bhattacharjee H. & Rosen B.P. 2007. Arsenic metabolism in prokaryotic and eukaryotic microbes, pp. 371–406. In: Nies D.H. & Silver S. (eds) Molecular Microbiology of Heavy Metals. Springer-Verlag, Berlin, Germany.Google Scholar

  • Bleeker P.M., Hakvoort H.W.J., Bliek M., Souer E. & Schat H. 2006. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate tolerant Holcus lanatus. Plant J. 45: 917–929.Google Scholar

  • Blum R., Beck A., Korte A., Stengel A., Letzel T., Lendzian K. & Grill E. 2007. Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J. 49: 740–749.Web of ScienceGoogle Scholar

  • Bundschuh J., Nath B., Bhattacharya P., Liu C.W., Armienta M.A., Moreno Lopez M.V., Lopez D.L., Jean J.S., Cornejo L., Lauer Macedo L.F. & Filho A.T. 2012. Arsenic in the human food chain: the Latin American perspective. Sci. Total Environ. 429: 92–106.Web of ScienceGoogle Scholar

  • Cobbett C.S. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123: 825–832.Google Scholar

  • Dhankher O.P., Rosen B.P., McKinney E.C. & Meagher R.B. 2006. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc. Natl. Acad. Sci. USA 103: 5413–5418.Google Scholar

  • Duan G.L., Zhou Y., Tong Y.P., Mukhopadhyay R., Rosen B.P. & Zhu Y.G. 2007. A CDC25 homologue from rice functions as an arsenate reductase. New Phytologist 174: 311–321.Google Scholar

  • Elke M., Lorentzen L. & Kingston H.M. 1996. Comparison of microwave-assisted and conventional leaching using EPA method 3050B. Anal. Chem. 68: 4316–4320.Google Scholar

  • Ellis D.R., Gumaelius L., Indriolo E., Pickering I.J., Banks J.A. & Salt D.E. 2006. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol. 141: 1544–1554.Google Scholar

  • Gregus Z. & Nemeti B. 2002. Purine nucleoside phosphorylase as a cytosolic arsenate reductase. Toxicol. Sci. 70: 13–19.Google Scholar

  • Gregus Z. & Nemeti B. 2005. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol. Toxicol. Sci. 85: 859–869.Google Scholar

  • Gregus Z. & Nemeti B. 2007. Glutathione-dependent reduction of arsenate by glycogen phosphorylase responsiveness to endogenous and xenobiotic inhibitors. Toxicol. Sci. 100: 44–53.Web of ScienceGoogle Scholar

  • Halder D., Bhowmick S., Biswas A., Mandal U., Nriagu J., Guha Mazumder D.N., Chatterjee D. & Bhattacharya P. 2012. Consumption of brown rice: a potential pathway for arsenic exposure in rural Bengal. Environ. Sci. Technol. 46: 4142–4148.Web of ScienceGoogle Scholar

  • Koch I., Wang L., Ollson C., Cullen W.R. & Reimer K.J.2000. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ. Sci. Technol. 34: 22–26.Google Scholar

  • Landrieu I., da Costa M., De Veylder L., Dewitte F., Vandepoele K., Hassan S., Wieruszeski J.M., Corellou F., Faure J.D., Van Montagu M., Inze D. & Lippens G. 2004. A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101: 13380–13385.Google Scholar

  • Liu W., Schat H., Bliek M., Chen Y., McGrath S.P., George G., Salt D.E. & Zhao F.J. 2012. Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana: implications for As detoxification and accumulation in plants. PLoS One 7: e42408.Google Scholar

  • Lombi E., Zhao F.J., Fuhrmann M., Ma L.Q. & McGrath S.P. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol. 156: 195–203.Google Scholar

  • Lund D., Larsson D., Nahar N. & Mandal A. 2010. Arsenic accumulation in plants – outlining strategies for developing improved variety of crops for avoiding arsenic toxicity in foods. J. Biol. Sys. 18: 223–224.Google Scholar

  • Lutsenko S. & Arguello J.M. 2012. Metal Transporters: Current Topics in Membranes. Academic Press, Waltham, USA, 328 pp. ISBN 978-0-12-394390-3.Google Scholar

  • Meharg A.A. & Hartley-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol. 154: 29–43.Google Scholar

  • Messens J. & Silver S. 2006. Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol. 362: 1–17.Google Scholar

  • Mukhopadhyay R., Shi J. & Rosen B.P. 2000. Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 275: 21149–21157.Google Scholar

  • Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15: 473–497.Google Scholar

  • Nahar N., Rahman A., Mos M., Warzecha T., Algerin M., Ghosh S., Johnson-Brousseau S. & Mandal A. 2012. In silico and in vivo studies of an Arabidopsis thaliana gene ACR2 putatively involved in arsenic accumulation in plants. J. Mol. Model. 18: 4249–4262.Google Scholar

  • Neidhardt H., Norra S., Tang X., Guo H. & Stuben D. 2012. Impact of irrigation with high arsenic burden groundwater on the soil-plant system: result from a case study in the Inner Mongolia, China. Environ. Poll. 163: 8–13.Google Scholar

  • Rahman A., Nahar N., Nawani N.N., Jass J., Desale P., Kapadnis B.P., Hossain K., Saha A.K., Ghosh S., Olsson B. & Mandal A. 2014. Isolation of a Lysinibacillus strain B1-CDA showing potentials for arsenic bioremediation. J. Environ. Sci. Health, Part A. 49: 1349–1360.Google Scholar

  • Rahman A., Nahar N., Nawani N.N., Jass J., Ghosh S., Olsson B. & Mandal A. 2015. Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Genomics 106: 384–392.Google Scholar

  • Tripathi R.D., Srivastava S., Mishra S., Singh N., Tuli R., Gupta D.K. Maathuis F.J.M. 2007. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol. 25: 158–165.Web of ScienceGoogle Scholar

  • Van den Broeck K., Vandecasteele C. & Geuns J.M.C. 1998. Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for arsenic contamination. Anal. Chim. Acta 361: 101–111.Google Scholar

  • Webb S.M., Gaillard J.F., Ma L., Tu C. 2003. XAS speciation of arsenic in a hyper-accumulating fern. Environ. Sci. Technol. 37: 754–760.Google Scholar

  • Wood S.A., Tait C.D. & Janecky D.R. 2002. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25°C. Geochem. Trans. 3: 31.Google Scholar

  • Zhou Y., Messier N., Ouellette M., Rosen B.P. & Mukhopadhyay R. 2004. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pentostam. J. Biol. Chem. 279: 37445–37451.Google Scholar

  • Zhao F.J, Ma J.F, Meharg A.A, McGrath S.P. 2009 Arsenic uptake and metabolism in plants. New Phytol. 181: 777–794.Web of ScienceGoogle Scholar

About the article

Received: 2017-02-24

Accepted: 2017-05-13

Published Online: 2017-05-30

Published in Print: 2017-05-24

Citation Information: Biologia, Volume 72, Issue 5, Pages 520–526, ISSN (Online) 1336-9563, ISSN (Print) 0006-3088, DOI: https://doi.org/10.1515/biolog-2017-0062.

Export Citation

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in